编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] 输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
思路:回溯法:通俗理解就是如果board[i][j]=VALUE不满足条件就回退到上一步的选择,重新选择。
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
代码实现:(递归)【参考了解题思路】
# [37] 解数独
#
#回溯法
"""
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,
按选优条件向前搜索,以达到目标。但当探索到某一步时,
发现原先选择并不优或达不到目标,就退回一步重新选择,
这种走不通就退回再走的技术为回溯法,
而满足回溯条件的某个状态的点称为“回溯点”。
"""
# @lc code=start
class Solution:
def solveSudoku(self, board)->None:
"""
Do not return anything, modify board in-place instead.
"""
#判断改行、列、3*3小格子是否满足数独规则:
def isRowSafe(row,value):
for i in range(9):
if board[row][i]==value:
return False
return True
def isColSafe(col,value):
for i in range(9):
if board[i][col]==value:
return False
return True
def isSmallboxSafe(row,col,value):
inirow=row//3*3
inicol=col//3*3
for i in range(3):
for j in range(3):
if board[i+inirow][j+inicol]==value:
return False
return True
#判断该位置是否可行
def isSafe(row,col,value):
return isRowSafe(row,value) and isColSafe(col,value) and isSmallboxSafe(row,col,value)
#解数独,结束条件
def solve(row,col):
if row==8 and col ==9:
return True
if col ==9:
col=0
row+=1
if board[row][col]!=".":
return solve(row,col+1)
for i in range(1,10):
if isSafe(row,col,str(i)):
i=str(i)
board[row][col] = i
if solve(row, col+1):
return board
#回溯到上一个状态(也就是前一个solve)
board[row][col]="."
return False
solve(0,0)
print(board)