解法:(参考了官方 解法)
1、哈希表
对于「前言」中提到的第一种做法:
我们可以将数组所有的数放入哈希表,随后从 1 开始依次枚举正整数,并判断其是否在哈希表中。
仔细想一想,我们为什么要使用哈希表?这是因为哈希表是一个可以支持快速查找的数据结构:给定一个元素,我们可以在 O(1) 的时间查找该元素是否在哈希表中。因此,我们可以考虑将给定的数组设计成哈希表的「替代产品」。
实际上,对于一个长度为 N 的数组,其中没有出现的最小正整数只能在 [1,N+1] 中。这是因为如果 [1,N] 都出现了,那么答案是 N+1,否则答案是[1,N] 中没有出现的最小正整数。这样一来,我们将所有在 [1,N] 范围内的数放入哈希表,也可以得到最终的答案。而给定的数组恰好长度为 N,这让我们有了一种将数组设计成哈希表的思路:
我们对数组进行遍历,对于遍历到的数 xx,如果它在[1,N] 的范围内,那么就将数组中的第 x−1 个位置(注意:数组下标从 0 开始)打上「标记」。在遍历结束之后,如果所有的位置都被打上了标记,那么答案是 N+1,否则答案是最小的没有打上标记的位置加 1。
那么如何设计这个「标记」呢?由于数组中的数没有任何限制,因此这并不是一件容易的事情。但我们可以继续利用上面的提到的性质:由于我们只在意 [1,N] 中的数,因此我们可以先对数组进行遍历,把不在 [1,N] 范围内的数修改成任意一个大于 N 的数(例如N+1)。这样一来,数组中的所有数就都是正数了,因此我们就可以将「标记」表示为「负号」。算法的流程如下:
- 我们将数组中所有小于等于 0 的数修改为N+1;
- 我们遍历数组中的每一个数 x,它可能已经被打了标记,因此原本对应的数为 ∣x∣,其中 ∣∣ 为绝对值符号。如果 |x| in [1, N]∣x∣∈[1,N],那么我们给数组中的第 |x| – 1个位置的数添加一个负号。注意如果它已经有负号,不需要重复添加;
- 在遍历完成之后,如果数组中的每一个数都是负数,那么答案是 N+1,否则答案是第一个正数的位置加 1。
def firstMissingPositive(nums):
lens=len(nums)
for i in range(lens):
if nums[i]<0:
nums[i]=lens+1
for i in range(lens):
num = abs(nums[i])
if num <= lens:
nums[num - 1] = -abs(nums[num - 1])
print(nums)
for i in range(lens):
if nums[i]>=0:
return i+1
return lens+1