项目地址:https://github.com/timzhang642/3D-Machine-Learning
3D Machine Learning
In recent years, tremendous amount of progress is being made in the field of 3D Machine Learning, which is an interdisciplinary field that fuses computer vision, computer graphics and machine learning. This repo is derived from my study notes and will be used as a place for triaging new research papers.
I’ll use the following icons to differentiate 3D representations:
- 📷 Multi-view Images
- 👾 Volumetric
- 🎲 Point Cloud
- 💎 Polygonal Mesh
- 💊 Primitive-based
To find related papers and their relationships, check out Connected Papers, which provides a neat way to visualize the academic field in a graph representation.
Get Involved
To contribute to this Repo, you may add content through pull requests or open an issue to let me know.
⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
We have also created a Slack workplace for people around the globe to ask questions, share knowledge and facilitate collaborations. Together, I’m sure we can advance this field as a collaborative effort. Join the community with this link.
⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
Table of Contents
- Courses
- Datasets
- 3D Pose Estimation
- Single Object Classification
- Multiple Objects Detection
- Scene/Object Semantic Segmentation
- 3D Geometry Synthesis/Reconstruction
- Texture/Material Analysis and Synthesis
- Style Learning and Transfer
- Scene Synthesis/Reconstruction
- Scene Understanding
Available Courses
Stanford CS231A: Computer Vision-From 3D Reconstruction to Recognition (Winter 2018)
UCSD CSE291-I00: Machine Learning for 3D Data (Winter 2018)
Stanford CS468: Machine Learning for 3D Data (Spring 2017)
MIT 6.838: Shape Analysis (Spring 2017)
Princeton COS 526: Advanced Computer Graphics (Fall 2010)
Princeton CS597: Geometric Modeling and Analysis (Fall 2003)