编码器—解码器(seq2seq)

当输入和输出都是不定长序列时(比如机器翻译),我们可以使用编码器—解码器(encoder-decoder) 或者seq2seq模型。这两个模型本质上都用到了两个循环神经网络,分别叫做编码器和解码器。编码器用来分析输入序列,解码器用来生成输出序列。

以机器翻译为例,输入可以是一段不定长的英语文本序列,输出可以是一段不定长的法语文本序列,例如

英语输入:“They”、“are”、“watching”、“.”

法语输出:“Ils”、“regardent”、“.”

下图描述了使用编码器—解码器将上述英语句子翻译成法语句子的一种方法。在训练数据集中,我们可以在每个句子后附上特殊符号“<eos>”(end of sequence)以表示序列的终止。编码器每个时间步的输入依次为英语句子中的单词、标点和特殊符号“<eos>”。下图中使用了编码器在最终时间步的隐藏状态作为输入句子的表征或编码信息。解码器在各个时间步中使用输入句子的编码信息和上个时间步的输出以及隐藏状态作为输入。我们希望解码器在各个时间步能正确依次输出翻译后的法语单词、标点和特殊符号”<eos>”。需要注意的是,解码器在最初时间步的输入用到了一个表示序列开始的特殊符号”<bos>”(beginning of sequence)。

使用编码器—解码器将句子由英语翻译成法语。编码器和解码器分别为循环神经网络

编码器的作用是把一个不定长的输入序列变换成一个定长的背景变量c,并在该背景变量中编码输入序列信息。常用的编码器是循环神经网络。

根据最大似然估计,我们可以最大化输出序列基于输入序列的条件概率,并得到该输出序列的损失,在模型训练中,所有输出序列损失的均值通常作为需要最小化的损失函数。

个人理解:

最后decoder每一步输出的是一个字典大小的概率值向量,分别表示这一步输出所有值的概率,一般取最大的值作为输出。

字典大小为4

因此那么在模型预测的时候就需要进行搜索,选择不同的搜索方式决定每一时间步的输出是字典里的那个值,选择不同的值会影响下一时间步的输出概率。

模型预测 Model Prediction

为了搜索该条件概率最大的输出序列,一种方法是穷举所有可能输出序列的条件概率,并输出条件概率最大的序列。我们将该序列称为最优序列,并将这种搜索方法称为穷举搜索 (exhaustive search)。

贪婪搜索 Greedy Search

我们还可以使用贪婪搜索 (greedy search) 。也就是说,对于输出序列任一时间步 [公式] ,从 [公式] 个词中搜索出输出词

[公式]

且一旦搜索出 “<eos>” 符号即完成输出序列。贪婪搜索的计算开销是 [公式] 。它比起穷举搜索的计算开销显著下降。例如,当 [公式] 且 [公式] 时,我们只需评估 [公式] 个序列。

下面我们来看一个例子。假设输出词典里面有 “A”、“B”、“C”和 “<eos>” 这四个词。下图中每个时间步下的四个数字分别代表了该时间步生成 “A”、“B”、“C”和 “<eos>” 这四个词的条件概率。在每个时间步,贪婪搜索选取生成条件概率最大的词。因此,将生成序列 “ABC<eos>” 。该输出序列的条件概率是 [公式] 。

束搜索 Beam Search

束搜索 (beam search) 是比贪婪搜索更加广义的搜索算法。它有一个束宽 (beam size) 超参数。我们将它设为 [公式] 。在时间步1时,选取当前时间步生成条件概率最大的 [公式] 个词,分别组成 [公式] 个候选输出序列的首词。在之后的每个时间步,基于上个时间步的 [公式] 个候选输出序列,从 [公式] 个可能的输出序列中选取生成条件概率最大的 [公式] 个,作为该时间步的候选输出序列。

最终,我们在各个时间步的候选输出序列中筛选出包含特殊符号 “<eos>” 的序列,并将它们中所有特殊符号 “<eos>” 后面的子序列舍弃,得到最终候选输出序列。在这些最终候选输出序列中,取以下分数最高的序列作为输出序列:

[公式]
[公式]

其中 [公式] 为最终候选序列长度, [公式] 一般可选为0.75。分母上的 是为了惩罚较长序列在以上分数中较多的对数相加项。分析可得,束搜索的计算开销为 [公式] 。这介于穷举搜索和贪婪搜索的计算开销之间。

  • 预测不定长序列的方法包括贪婪搜索、穷举搜索和束搜索。
  • 束搜索通过灵活的束宽来权衡计算开销和搜索质量。

注意力机制

在普通的编码器-解码器模型中,有一个很大的局限性。那就是上下文变量对于 Decoding 阶段每个时间步都是一样的,这可能是模型性能的一个瓶颈。我们希望不同时间步的解码能够依赖于与之更相关的上下文信息,换句话说,Decoding 往往并不需要整个输入序列的信息,而是要有所侧重。于是,Bengio 团队的 Bahdanau 在 2014年首次在编码器-解码器模型中引入了注意力机制 (Attention Mechanism):

注意力机制通过注意力汇聚将查询(自主性提示)和键(非自主性提示)结合在一起,实现对值(感官输入)的选择倾向

动机 Motivation

以英语-法语翻译为例,给定一对英语输入序列 “They”、“are”、“watching”、“.” 和法语输出序列 “Ils”、“regardent”、“.”。解码器可以在输出序列的时间步1使用更集中编码了 “They”、“are” 信息的上下文变量来生成 “Ils”,在时间步2使用更集中编码了 “watching” 信息的上下文变量来生成“regardent”,在时间步3使用更集中编码了 “.” 信息的上下文变量来生成 “.”。这看上去就像是在解码器的每一时间步对输入序列中不同时间步编码的信息分配不同的注意力。这也是注意力机制的由来。它最早由 Bahanau 等人提出。

仍然以循环神经网络为例,注意力机制通过对编码器所有时间步的隐藏状态做加权平均来得到背景变量。解码器在每一时间步调整这些权重,即注意力权重,从而能够在不同时间步分别关注输入序列中的不同部分并编码进相应时间步的背景变量。

我们先描述第一个关键点,即计算背景变量。下图描绘了注意力机制如何为解码器在时间步2计算背景变量。首先,函数a根据解码器在时间步1的隐藏状态和编码器在各个时间步的隐藏状态计算softmax运算的输入。softmax运算输出概率分布并对编码器各个时间步的隐藏状态做加权平均,从而得到背景变量。

本质上,注意力机制能够为表征中较有价值的部分分配较多的计算资源。这个有趣的想法自提出后得到了快速发展,特别是启发了依靠注意力机制来编码输入序列并解码出输出序列的变换器(Transformer)模型的设计 [2]。变换器抛弃了卷积神经网络和循环神经网络的架构。它在计算效率上比基于循环神经网络的编码器—解码器模型通常更具明显优势。含注意力机制的变换器的编码结构在后来的BERT预训练模型中得以应用并令后者大放异彩:微调后的模型在多达11项自然语言处理任务中取得了当时最先进的结果 [3]。不久后,同样是基于变换器设计的GPT-2模型于新收集的语料数据集预训练后,在7个未参与训练的语言模型数据集上均取得了当时最先进的结果 [4]。除了自然语言处理领域,注意力机制还被广泛用于图像分类、自动图像描述、唇语解读以及语音识别

评价机器翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

总结 Conclusions

让我们回顾一下带注意力机制的编码器-解码器的整个设计:

  1. Encoder 总结输入序列的信息,得到上下文变量 [公式]
  2. Decoder 将上下文变量 [公式] 中的信息解码生成输出序列
  3. 设计 [公式] 函数
  4. 计算当前时间步的隐藏状态 [公式]
  5. 计算当前时间步的解码器输出概率 [公式]
  6. 得到输出序列的联合概率 [公式] 并最大化
  7. 根据 MLE,就是最小化联合概率的负对数
  8. 得到 loss function
  9. 用优化方法降低 loss,学习模型参数
  10. 为了避免相同的上下文变量对模型性能的限制,给编码器-解码器模型加入了注意力机制。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注