Few-Shot Papers–小样本学习论文汇总

来自GitHub仓库:https://github.com/tata1661/FSL-Mate/tree/master/FewShotPapers

This repository contains few-shot learning (FSL) papers mentioned in our FSL survey published in ACM Computing Surveys (JCR Q1, CORE A*).

For convenience, we also include public implementations of respective authors.

We will update this paper list to include new FSL papers periodically.

Citation

Please cite our paper if you find it helpful.

@article{wang2020generalizing,
  title={Generalizing from a few examples: A survey on few-shot learning},
  author={Wang, Yaqing and Yao, Quanming and Kwok, James T and Ni, Lionel M},
  journal={ACM Computing Surveys},
  volume={53},
  number={3},
  pages={1--34},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Content

  1. Survey
  2. Data
  3. Model
    1. Multitask Learning
    2. Embedding/Metric Learning
    3. Learning with External Memory
    4. Generative Modeling
  4. Algorithm
    1. Refining Existing Parameters
    2. Refining Meta-learned Parameters
    3. Learning Search Steps
  5. Applications
    1. Computer Vision
    2. Robotics
    3. Natural Language Processing
    4. Acoustic Signal Processing
    5. Recommendation
    6. Others
  6. Theories
  7. Few-shot Learning and Zero-shot Learning
  8. Variants of Few-shot Learning
  9. Datasets/Benchmarks
  10. Software Library

Survey

  1. Generalizing from a few examples: A survey on few-shot learning, CSUR, 2020 Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. paper arXiv

Data

  1. Learning from one example through shared densities on transforms, in CVPR, 2000. E. G. Miller, N. E. Matsakis, and P. A. Viola. paper
  2. Domain-adaptive discriminative one-shot learning of gestures, in ECCV, 2014. T. Pfister, J. Charles, and A. Zisserman. paper
  3. One-shot learning of scene locations via feature trajectory transfer, in CVPR, 2016. R. Kwitt, S. Hegenbart, and M. Niethammer. paper
  4. Low-shot visual recognition by shrinking and hallucinating features, in ICCV, 2017. B. Hariharan and R. Girshick. paper code
  5. Improving one-shot learning through fusing side information, arXiv preprint, 2017. Y.H.Tsai and R.Salakhutdinov. paper
  6. Fast parameter adaptation for few-shot image captioning and visual question answering, in ACM MM, 2018. X. Dong, L. Zhu, D. Zhang, Y. Yang, and F. Wu. paper
  7. Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning, in CVPR, 2018. Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang. paper
  8. Low-shot learning with large-scale diffusion, in CVPR, 2018. M. Douze, A. Szlam, B. Hariharan, and H. Jégou. paper
  9. Diverse few-shot text classification with multiple metrics, in NAACL-HLT, 2018. M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and B. Zhou. paper code
  10. Delta-encoder: An effective sample synthesis method for few-shot object recognition, in NeurIPS, 2018. E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, R. Feris, R. Giryes, and A. Bronstein. paper
  11. Low-shot learning via covariance-preserving adversarial augmentation networks, in NeurIPS, 2018. H. Gao, Z. Shou, A. Zareian, H. Zhang, and S. Chang. paper
  12. Learning to self-train for semi-supervised few-shot classification, in NeurIPS, 2019. X. Li, Q. Sun, Y. Liu, S. Zheng, Q. Zhou, T.-S. Chua, and B. Schiele. paper
  13. Few-shot learning with global class representations, in ICCV, 2019. A. Li, T. Luo, T. Xiang, W. Huang, and L. Wang. paper
  14. AutoAugment: Learning augmentation policies from data, in CVPR, 2019. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. paper
  15. EDA: Easy data augmentation techniques for boosting performance on text classification tasks, in EMNLP and IJCNLP, 2019. J. Wei and K. Zou. paper
  16. LaSO: Label-set operations networks for multi-label few-shot learning, in CVPR, 2019. A. Alfassy, L. Karlinsky, A. Aides, J. Shtok, S. Harary, R. Feris, R. Giryes, and A. M. Bronstein. paper code
  17. Image deformation meta-networks for one-shot learning, in CVPR, 2019. Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, and M. Hebert. paper code
  18. Spot and learn: A maximum-entropy patch sampler for few-shot image classification, in CVPR, 2019. W.-H. Chu, Y.-J. Li, J.-C. Chang, and Y.-C. F. Wang. paper
  19. Data augmentation using learned transformations for one-shot medical image segmentation, in CVPR, 2019. A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca. paper
  20. Adversarial feature hallucination networks for few-shot learning, in CVPR, 2020. K. Li, Y. Zhang, K. Li, and Y. Fu. paper
  21. Instance credibility inference for few-shot learning, in CVPR, 2020. Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. paper
  22. Diversity transfer network for few-shot learning, in AAAI, 2020. M. Chen, Y. Fang, X. Wang, H. Luo, Y. Geng, X. Zhang, C. Huang, W. Liu, and B. Wang. paper code
  23. Neural snowball for few-shot relation learning, in AAAI, 2020. T. Gao, X. Han, R. Xie, Z. Liu, F. Lin, L. Lin, and M. Sun. paper code
  24. Associative alignment for few-shot image classification, in ECCV, 2020. A. Afrasiyabi, J. Lalonde, and C. Gagné. paper code
  25. Information maximization for few-shot learning, in NeurIPS, 2020. M. Boudiaf, I. Ziko, J. Rony, J. Dolz, P. Piantanida, and I. B. Ayed. paper code
  26. Self-training for few-shot transfer across extreme task differences, in ICLR, 2021. C. P. Phoo, and B. Hariharan. paper
  27. Free lunch for few-shot learning: Distribution calibration, in ICLR, 2021. S. Yang, L. Liu, and M. Xu. paper code
  28. Parameterless transductive feature re-representation for few-shot learning, in ICML, 2021. W. Cui, and Y. Guo;. paper
  29. Learning intact features by erasing-inpainting for few-shot classification, in AAAI, 2021. J. Li, Z. Wang, and X. Hu. paper
  30. Variational feature disentangling for fine-grained few-shot classification, in ICCV, 2021. J. Xu, H. Le, M. Huang, S. Athar, and D. Samaras. paper
  31. Coarsely-labeled data for better few-shot transfer, in ICCV, 2021. C. P. Phoo, and B. Hariharan. paper
  32. Pseudo-loss confidence metric for semi-supervised few-shot learning, in ICCV, 2021. K. Huang, J. Geng, W. Jiang, X. Deng, and Z. Xu. paper
  33. Iterative label cleaning for transductive and semi-supervised few-shot learning, in ICCV, 2021. M. Lazarou, T. Stathaki, and Y. Avrithis. paper
  34. Meta two-sample testing: Learning kernels for testing with limited data, in NeurIPS, 2021. F. Liu, W. Xu, J. Lu, and D. J. Sutherland. paper
  35. Dynamic distillation network for cross-domain few-shot recognition with unlabeled data, in NeurIPS, 2021. A. Islam, C.-F. Chen, R. Panda, L. Karlinsky, R. Feris, and R. Radke. paper
  36. Towards better understanding and better generalization of low-shot classification in histology images with contrastive learning, in ICLR, 2022. J. Yang, H. Chen, J. Yan, X. Chen, and J. Yao. paper code
  37. FlipDA: Effective and robust data augmentation for few-shot learning, in ACL, 2022. J. Zhou, Y. Zheng, J. Tang, L. Jian, and Z. Yang. paper code
  38. PromDA: Prompt-based data augmentation for low-resource NLU tasks, in ACL, 2022. Y. Wang, C. Xu, Q. Sun, H. Hu, C. Tao, X. Geng, and D. Jiang. paper code
  39. N-shot learning for augmenting task-oriented dialogue state tracking, in Findings of ACL, 2022. I. T. Aksu, Z. Liu, M. Kan, and N. F. Chen. paper
  40. Generating representative samples for few-shot classification, in CVPR, 2022. J. Xu, and H. Le. paper code
  41. Semi-supervised few-shot learning via multi-factor clustering, in CVPR, 2022. J. Ling, L. Liao, M. Yang, and J. Shuai. paper

Model

Multitask Learning

  1. Multi-task transfer methods to improve one-shot learning for multimedia event detection, in BMVC, 2015. W. Yan, J. Yap, and G. Mori. paper
  2. Label efficient learning of transferable representations across domains and tasks, in NeurIPS, 2017. Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei. paper
  3. Few-shot adversarial domain adaptation, in NeurIPS, 2017. S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. paper
  4. One-shot unsupervised cross domain translation, in NeurIPS, 2018. S. Benaim and L. Wolf. paper
  5. Multi-content GAN for few-shot font style transfer, in CVPR, 2018. S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. paper code
  6. Feature space transfer for data augmentation, in CVPR, 2018. B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos. paper
  7. Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data, in ECCV, 2018. Y. Zhang, H. Tang, and K. Jia. paper
  8. Few-shot charge prediction with discriminative legal attributes, in COLING, 2018. Z. Hu, X. Li, C. Tu, Z. Liu, and M. Sun. paper
  9. Boosting few-shot visual learning with self-supervision, in ICCV, 2019. S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord. paper
  10. When does self-supervision improve few-shot learning?, in ECCV, 2020. J. Su, S. Maji, and B. Hariharan. paper
  11. Pareto self-supervised training for few-shot learning, in CVPR, 2021. Z. Chen, J. Ge, H. Zhan, S. Huang, and D. Wang. paper
  12. Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation, in ICML, 2021. H. Wang, H. Zhao, and B. Li;. paper code

Embedding/Metric Learning

  1. Object classification from a single example utilizing class relevance metrics, in NeurIPS, 2005. M. Fink. paper
  2. Optimizing one-shot recognition with micro-set learning, in CVPR, 2010. K. D. Tang, M. F. Tappen, R. Sukthankar, and C. H. Lampert. paper
  3. Siamese neural networks for one-shot image recognition, ICML deep learning workshop, 2015. G. Koch, R. Zemel, and R. Salakhutdinov. paper
  4. Matching networks for one shot learning, in NeurIPS, 2016. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al. paper
  5. Learning feed-forward one-shot learners, in NeurIPS, 2016. L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. paper
  6. Few-shot learning through an information retrieval lens, in NeurIPS, 2017. E. Triantafillou, R. Zemel, and R. Urtasun. paper
  7. Prototypical networks for few-shot learning, in NeurIPS, 2017. J. Snell, K. Swersky, and R. S. Zemel. paper code
  8. Attentive recurrent comparators, in ICML, 2017. P. Shyam, S. Gupta, and A. Dukkipati. paper
  9. Learning algorithms for active learning, in ICML, 2017. P. Bachman, A. Sordoni, and A. Trischler. paper
  10. Active one-shot learning, arXiv preprint, 2017. M. Woodward and C. Finn. paper
  11. Structured set matching networks for one-shot part labeling, in CVPR, 2018. J. Choi, J. Krishnamurthy, A. Kembhavi, and A. Farhadi. paper
  12. Low-shot learning from imaginary data, in CVPR, 2018. Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. paper
  13. Learning to compare: Relation network for few-shot learning, in CVPR, 2018. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. paper code
  14. Dynamic conditional networks for few-shot learning, in ECCV, 2018. F. Zhao, J. Zhao, S. Yan, and J. Feng. paper code
  15. TADAM: Task dependent adaptive metric for improved few-shot learning, in NeurIPS, 2018. B. Oreshkin, P. R. López, and A. Lacoste. paper
  16. Meta-learning for semi-supervised few-shot classification, in ICLR, 2018. M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenen- baum, H. Larochelle, and R. S. Zemel. paper code
  17. Few-shot learning with graph neural networks, in ICLR, 2018. V. G. Satorras and J. B. Estrach. paper code
  18. A simple neural attentive meta-learner, in ICLR, 2018. N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. paper
  19. Meta-learning with differentiable closed-form solvers, in ICLR, 2019. L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. paper
  20. Learning to propagate labels: Transductive propagation network for few-shot learning, in ICLR, 2019. Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. paper code
  21. Multi-level matching and aggregation network for few-shot relation classification, in ACL, 2019. Z.-X. Ye, and Z.-H. Ling. paper
  22. Induction networks for few-shot text classification, in EMNLP-IJCNLP, 2019. R. Geng, B. Li, Y. Li, X. Zhu, P. Jian, and J. Sun. paper
  23. Hierarchical attention prototypical networks for few-shot text classification, in EMNLP-IJCNLP, 2019. S. Sun, Q. Sun, K. Zhou, and T. Lv. paper
  24. Cross attention network for few-shot classification, in NeurIPS, 2019. R. Hou, H. Chang, B. Ma, S. Shan, and X. Chen. paper
  25. Hybrid attention-based prototypical networks for noisy few-shot relation classification, in AAAI, 2019. T. Gao, X. Han, Z. Liu, and M. Sun. paper code
  26. Attention-based multi-context guiding for few-shot semantic segmentation, in AAAI, 2019. T. Hu, P. Yang, C. Zhang, G. Yu, Y. Mu and C. G. M. Snoek. paper
  27. Distribution consistency based covariance metric networks for few-shot learning, in AAAI, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao and J. Luo. paper
  28. A dual attention network with semantic embedding for few-shot learning, in AAAI, 2019. S. Yan, S. Zhang, and X. He. paper
  29. TapNet: Neural network augmented with task-adaptive projection for few-shot learning, in ICML, 2019. S. W. Yoon, J. Seo, and J. Moon. paper
  30. Prototype propagation networks (PPN) for weakly-supervised few-shot learning on category graph, in IJCAI, 2019. L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, C. Zhang. paper code
  31. Collect and select: Semantic alignment metric learning for few-shot learning, in ICCV, 2019. F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao. paper
  32. Transductive episodic-wise adaptive metric for few-shot learning, in ICCV, 2019. L. Qiao, Y. Shi, J. Li, Y. Wang, T. Huang, and Y. Tian. paper
  33. Few-shot learning with embedded class models and shot-free meta training, in ICCV, 2019. A. Ravichandran, R. Bhotika, and S. Soatto. paper
  34. PARN: Position-aware relation networks for few-shot learning, in ICCV, 2019. Z. Wu, Y. Li, L. Guo, and K. Jia. paper
  35. PANet: Few-shot image semantic segmentation with prototype alignment, in ICCV, 2019. K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng. paper code
  36. RepMet: Representative-based metric learning for classification and few-shot object detection, in CVPR, 2019. L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes, and A. M. Bronstein. paper code
  37. Edge-labeling graph neural network for few-shot learning, in CVPR, 2019. J. Kim, T. Kim, S. Kim, and C. D. Yoo. paper
  38. Finding task-relevant features for few-shot learning by category traversal, in CVPR, 2019. H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang. paper code
  39. Revisiting local descriptor based image-to-class measure for few-shot learning, in CVPR, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo. paper code
  40. TAFE-Net: Task-aware feature embeddings for low shot learning, in CVPR, 2019. X. Wang, F. Yu, R. Wang, T. Darrell, and J. E. Gonzalez. paper code
  41. Improved few-shot visual classification, in CVPR, 2020. P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal. paper
  42. Boosting few-shot learning with adaptive margin loss, in CVPR, 2020. A. Li, W. Huang, X. Lan, J. Feng, Z. Li, and L. Wang. paper
  43. Adaptive subspaces for few-shot learning, in CVPR, 2020. C. Simon, P. Koniusz, R. Nock, and M. Harandi. paper
  44. DPGN: Distribution propagation graph network for few-shot learning, in CVPR, 2020. L. Yang, L. Li, Z. Zhang, X. Zhou, E. Zhou, and Y. Liu. paper
  45. Few-shot learning via embedding adaptation with set-to-set functions, in CVPR, 2020. H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha. paper code
  46. DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers, in CVPR, 2020. C. Zhang, Y. Cai, G. Lin, and C. Shen. paper code
  47. Few-shot text classification with distributional signatures, in ICLR, 2020. Y. Bao, M. Wu, S. Chang, and R. Barzilay. paper code
  48. Learning task-aware local representations for few-shot learning, in IJCAI, 2020. C. Dong, W. Li, J. Huo, Z. Gu, and Y. Gao. paper
  49. SimPropNet: Improved similarity propagation for few-shot image segmentation, in IJCAI, 2020. S. Gairola, M. Hemani, A. Chopra, and B. Krishnamurthy. paper
  50. Asymmetric distribution measure for few-shot learning, in IJCAI, 2020. W. Li, L. Wang, J. Huo, Y. Shi, Y. Gao, and J. Luo. paper
  51. Transductive relation-propagation network for few-shot learning, in IJCAI, 2020. Y. Ma, S. Bai, S. An, W. Liu, A. Liu, X. Zhen, and X. Liu. paper
  52. Weakly supervised few-shot object segmentation using co-attention with visual and semantic embeddings, in IJCAI, 2020. M. Siam, N. Doraiswamy, B. N. Oreshkin, H. Yao, and M. Jägersand. paper
  53. Few-shot learning on graphs via super-classes based on graph spectral measures, in ICLR, 2020. J. Chauhan, D. Nathani, and M. Kaul. paper
  54. SGAP-Net: Semantic-guided attentive prototypes network for few-shot human-object interaction recognition, in AAAI, 2020. Z. Ji, X. Liu, Y. Pang, and X. Li. paper
  55. One-shot image classification by learning to restore prototypes, in AAAI, 2020. W. Xue, and W. Wang. paper
  56. Negative margin matters: Understanding margin in few-shot classification, in ECCV, 2020. B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu. paper code
  57. Prototype rectification for few-shot learning, in ECCV, 2020. J. Liu, L. Song, and Y. Qin. paper
  58. Rethinking few-shot image classification: A good embedding is all you need?, in ECCV, 2020. Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. paper code
  59. SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks, in ECCV, 2020. V. N. Nguyen, S. Løkse, K. Wickstrøm, M. Kampffmeyer, D. Roverso, and R. Jenssen. paper
  60. TAFSSL: Task-adaptive feature sub-space learning for few-shot classification, in ECCV, 2020. M. Lichtenstein, P. Sattigeri, R. Feris, R. Giryes, and L. Karlinsky. paper
  61. Attentive prototype few-shot learning with capsule network-based embedding, in ECCV, 2020. F. Wu, J. S.Smith, W. Lu, C. Pang, and B. Zhang. paper
  62. Embedding propagation: Smoother manifold for few-shot classification, in ECCV, 2020. P. Rodríguez, I. Laradji, A. Drouin, and A. Lacoste. paper code
  63. Laplacian regularized few-shot learning, in ICML, 2020. I. M. Ziko, J. Dolz, E. Granger, and I. B. Ayed. paper code
  64. TAdaNet: Task-adaptive network for graph-enriched meta-learning, in KDD, 2020. Q. Suo, i. Chou, W. Zhong, and A. Zhang. paper
  65. Concept learners for few-shot learning, in ICLR, 2021. K. Cao, M. Brbic, and J. Leskovec. paper
  66. Reinforced attention for few-shot learning and beyond, in CVPR, 2021. J. Hong, P. Fang, W. Li, T. Zhang, C. Simon, M. Harandi, and L. Petersson. paper
  67. Mutual CRF-GNN for few-shot learning, in CVPR, 2021. S. Tang, D. Chen, L. Bai, K. Liu, Y. Ge, and W. Ouyang. paper
  68. Few-shot classification with feature map reconstruction networks, in CVPR, 2021. D. Wertheimer, L. Tang, and B. Hariharan. paper code
  69. ECKPN: Explicit class knowledge propagation network for transductive few-shot learning, in CVPR, 2021. C. Chen, X. Yang, C. Xu, X. Huang, and Z. Ma. paper
  70. Exploring complementary strengths of invariant and equivariant representations for few-shot learning, in CVPR, 2021. M. N. Rizve, S. Khan, F. S. Khan, and M. Shah. paper
  71. Rethinking class relations: Absolute-relative supervised and unsupervised few-shot learning, in CVPR, 2021. H. Zhang, P. Koniusz, S. Jian, H. Li, and P. H. S. Torr. paper
  72. Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification, in ICML, 2021. D. H. Lee, and S. Chung. paper code
  73. Learning a few-shot embedding model with contrastive learning, in AAAI, 2021. C. Liu, Y. Fu, C. Xu, S. Yang, J. Li, C. Wang, and L. Zhang. paper
  74. Looking wider for better adaptive representation in few-shot learning, in AAAI, 2021. J. Zhao, Y. Yang, X. Lin, J. Yang, and L. He. paper
  75. Tailoring embedding function to heterogeneous few-shot tasks by global and local feature adaptors, in AAAI, 2021. S. Lu, H. Ye, and D.-C. Zhan. paper
  76. Knowledge guided metric learning for few-shot text classification, in NAACL-HLT, 2021. D. Sui, Y. Chen, B. Mao, D. Qiu, K. Liu, and J. Zhao. paper
  77. Mixture-based feature space learning for few-shot image classification, in ICCV, 2021. A. Afrasiyabi, J. Lalonde, and C. Gagné. paper
  78. Z-score normalization, hubness, and few-shot learning, in ICCV, 2021. N. Fei, Y. Gao, Z. Lu, and T. Xiang. paper
  79. Relational embedding for few-shot classification, in ICCV, 2021. D. Kang, H. Kwon, J. Min, and M. Cho. paper code
  80. Transductive few-shot classification on the oblique manifold, in ICCV, 2021. G. Qi, H. Yu, Z. Lu, and S. Li. paper code
  81. Curvature generation in curved spaces for few-shot learning, in ICCV, 2021. Z. Gao, Y. Wu, Y. Jia, and M. Harandi. paper
  82. On episodes, prototypical networks, and few-shot learning, in NeurIPS, 2021. S. Laenen, and L. Bertinetto. paper
  83. Few-shot learning as cluster-induced voronoi diagrams: A geometric approach, in ICLR, 2022. C. Ma, Z. Huang, M. Gao, and J. Xu. paper code
  84. Few-shot learning with siamese networks and label tuning, in ACL, 2022. T. Müller, G. Pérez-Torró, and M. Franco-Salvador. paper code
  85. Learning to affiliate: Mutual centralized learning for few-shot classification, in CVPR, 2022. Y. Liu, W. Zhang, C. Xiang, T. Zheng, D. Cai, and X. He. paper
  86. Matching feature sets for few-shot image classification, in CVPR, 2022. A. Afrasiyabi, H. Larochelle, J. Lalonde, and C. Gagné. paper code
  87. Joint distribution matters: Deep Brownian distance covariance for few-shot classification, in CVPR, 2022. J. Xie, F. Long, J. Lv, Q. Wang, and P. Li. paper
  88. CAD: Co-adapting discriminative features for improved few-shot classification, in CVPR, 2022. P. Chikontwe, S. Kim, and S. H. Park. paper
  89. Ranking distance calibration for cross-domain few-shot learning, in CVPR, 2022. P. Li, S. Gong, C. Wang, and Y. Fu. paper
  90. EASE: Unsupervised discriminant subspace learning for transductive few-shot learning, in CVPR, 2022. H. Zhu, and P. Koniusz. paper code
  91. Cross-domain few-shot learning with task-specific adapters, in CVPR, 2022. W. Li, X. Liu, and H. Bilen. paper code

Learning with External Memory

  1. Meta-learning with memory-augmented neural networks, in ICML, 2016. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. paper
  2. Few-shot object recognition from machine-labeled web images, in CVPR, 2017. Z. Xu, L. Zhu, and Y. Yang. paper
  3. Learning to remember rare events, in ICLR, 2017. Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio. paper
  4. Meta networks, in ICML, 2017. T. Munkhdalai and H. Yu. paper
  5. Memory matching networks for one-shot image recognition, in CVPR, 2018. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei. paper
  6. Compound memory networks for few-shot video classification, in ECCV, 2018. L. Zhu and Y. Yang. paper
  7. Memory, show the way: Memory based few shot word representation learning, in EMNLP, 2018. J. Sun, S. Wang, and C. Zong. paper
  8. Rapid adaptation with conditionally shifted neurons, in ICML, 2018. T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. paper
  9. Adaptive posterior learning: Few-shot learning with a surprise-based memory module, in ICLR, 2019. T. Ramalho and M. Garnelo. paper code
  10. Coloring with limited data: Few-shot colorization via memory augmented networks, in CVPR, 2019. S. Yoo, H. Bahng, S. Chung, J. Lee, J. Chang, and J. Choo. paper
  11. ACMM: Aligned cross-modal memory for few-shot image and sentence matching, in ICCV, 2019. Y. Huang, and L. Wang. paper
  12. Dynamic memory induction networks for few-shot text classification, in ACL, 2020. R. Geng, B. Li, Y. Li, J. Sun, and X. Zhu. paper
  13. Few-shot visual learning with contextual memory and fine-grained calibration, in IJCAI, 2020. Y. Ma, W. Liu, S. Bai, Q. Zhang, A. Liu, W. Chen, and X. Liu. paper
  14. Learn from concepts: Towards the purified memory for few-shot learning, in IJCAI, 2021. X. Liu, X. Tian, S. Lin, Y. Qu, L. Ma, W. Yuan, Z. Zhang, and Y. Xie. paper
  15. Prototype memory and attention mechanisms for few shot image generation, in ICLR, 2022. T. Li, Z. Li, A. Luo, H. Rockwell, A. B. Farimani, and T. S. Lee. paper code
  16. Hierarchical variational memory for few-shot learning across domains, in ICLR, 2022. Y. Du, X. Zhen, L. Shao, and C. G. M. Snoek. paper code
  17. Remember the difference: Cross-domain few-shot semantic segmentation via meta-memory transfer, in CVPR, 2022. W. Wang, L. Duan, Y. Wang, Q. En, J. Fan, and Z. Zhang. paper

Generative Modeling

  1. One-shot learning of object categories, TPAMI, 2006. L. Fei-Fei, R. Fergus, and P. Perona. paper
  2. Learning to learn with compound HD models, in NeurIPS, 2011. A. Torralba, J. B. Tenenbaum, and R. R. Salakhutdinov. paper
  3. One-shot learning with a hierarchical nonparametric bayesian model, in ICML Workshop on Unsupervised and Transfer Learning, 2012. R. Salakhutdinov, J. Tenenbaum, and A. Torralba. paper
  4. Human-level concept learning through probabilistic program induction, Science, 2015. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper
  5. One-shot generalization in deep generative models, in ICML, 2016. D. Rezende, I. Danihelka, K. Gregor, and D. Wierstra. paper
  6. One-shot video object segmentation, in CVPR, 2017. S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. paper
  7. Towards a neural statistician, in ICLR, 2017. H. Edwards and A. Storkey. paper
  8. Extending a parser to distant domains using a few dozen partially annotated examples, in ACL, 2018. V. Joshi, M. Peters, and M. Hopkins. paper
  9. MetaGAN: An adversarial approach to few-shot learning, in NeurIPS, 2018. R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song. paper
  10. Few-shot autoregressive density estimation: Towards learning to learn distributions, in ICLR, 2018. S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Eslami, D. Rezende, O. Vinyals, and N. de Freitas. paper
  11. The variational homoencoder: Learning to learn high capacity generative models from few examples, in UAI, 2018. L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum. paper
  12. Meta-learning probabilistic inference for prediction, in ICLR, 2019. J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. paper
  13. Variational prototyping-encoder: One-shot learning with prototypical images, in CVPR, 2019. J. Kim, T.-H. Oh, S. Lee, F. Pan, and I. S. Kweon. paper code
  14. Variational few-shot learning, in ICCV, 2019. J. Zhang, C. Zhao, B. Ni, M. Xu, and X. Yang. paper
  15. Infinite mixture prototypes for few-shot learning, in ICML, 2019. K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum. paper
  16. Dual variational generation for low shot heterogeneous face recognition, in NeurIPS, 2019. C. Fu, X. Wu, Y. Hu, H. Huang, and R. He. paper
  17. Bayesian meta sampling for fast uncertainty adaptation, in ICLR, 2020. Z. Wang, Y. Zhao, P. Yu, R. Zhang, and C. Chen. paper
  18. Empirical Bayes transductive meta-learning with synthetic gradients, in ICLR, 2020. S. X. Hu, P. G. Moreno, Y. Xiao, X. Shen, G. Obozinski, N. D. Lawrence, and A. C. Damianou. paper
  19. Few-shot relation extraction via bayesian meta-learning on relation graphs, in ICML, 2020. M. Qu, T. Gao, L. A. C. Xhonneux, and J. Tang. paper code
  20. Interventional few-shot learning, in NeurIPS, 2020. Z. Yue, H. Zhang, Q. Sun, and X. Hua. paper code
  21. Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes, in ICLR, 2021. J. Snell, and R. Zemel. paper
  22. Few-shot Bayesian optimization with deep kernel surrogates, in ICLR, 2021. M. Wistuba, and J. Grabocka. paper
  23. Modeling the probabilistic distribution of unlabeled data for one-shot medical image segmentation, in AAAI, 2021. Y. Ding, X. Yu, and Y. Yang. paper code
  24. A hierarchical transformation-discriminating generative model for few shot anomaly detection, in ICCV, 2021. S. Sheynin, S. Benaim, and L. Wolf. paper
  25. Reinforced few-shot acquisition function learning for Bayesian optimization, in NeurIPS, 2021. B. Hsieh, P. Hsieh, and X. Liu. paper
  26. GanOrCon: Are generative models useful for few-shot segmentation?, in CVPR, 2022. O. Saha, Z. Cheng, and S. Maji. paper
  27. Few shot generative model adaption via relaxed spatial structural alignment, in CVPR, 2022. J. Xiao, L. Li, C. Wang, Z. Zha, and Q. Huang. paper

Algorithm

Refining Existing Parameters

  1. Cross-generalization: Learning novel classes from a single example by feature replacement, in CVPR, 2005. E. Bart and S. Ullman. paper
  2. One-shot adaptation of supervised deep convolutional models, in ICLR, 2013. J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. paper
  3. Learning to learn: Model regression networks for easy small sample learning, in ECCV, 2016. Y.-X. Wang and M. Hebert. paper
  4. Learning from small sample sets by combining unsupervised meta-training with CNNs, in NeurIPS, 2016. Y.-X. Wang and M. Hebert. paper
  5. Efficient k-shot learning with regularized deep networks, in AAAI, 2018. D. Yoo, H. Fan, V. N. Boddeti, and K. M. Kitani. paper
  6. CLEAR: Cumulative learning for one-shot one-class image recognition, in CVPR, 2018. J. Kozerawski and M. Turk. paper
  7. Learning structure and strength of CNN filters for small sample size training, in CVPR, 2018. R. Keshari, M. Vatsa, R. Singh, and A. Noore. paper
  8. Dynamic few-shot visual learning without forgetting, in CVPR, 2018. S. Gidaris and N. Komodakis. paper code
  9. Low-shot learning with imprinted weights, in CVPR, 2018. H. Qi, M. Brown, and D. G. Lowe. paper
  10. Neural voice cloning with a few samples, in NeurIPS, 2018. S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. paper
  11. Text classification with few examples using controlled generalization, in NAACL-HLT, 2019. A. Mahabal, J. Baldridge, B. K. Ayan, V. Perot, and D. Roth. paper
  12. Low shot box correction for weakly supervised object detection, in IJCAI, 2019. T. Pan, B. Wang, G. Ding, J. Han, and J. Yong. paper
  13. Diversity with cooperation: Ensemble methods for few-shot classification, in ICCV, 2019. N. Dvornik, C. Schmid, and J. Mairal. paper
  14. Few-shot image recognition with knowledge transfer, in ICCV, 2019. Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang. paper
  15. Generating classification weights with gnn denoising autoencoders for few-shot learning, in CVPR, 2019. S. Gidaris, and N. Komodakis. paper code
  16. Dense classification and implanting for few-shot learning, in CVPR, 2019. Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc. paper
  17. Few-shot adaptive faster R-CNN, in CVPR, 2019. T. Wang, X. Zhang, L. Yuan, and J. Feng. paper
  18. TransMatch: A transfer-learning scheme for semi-supervised few-shot learning, in CVPR, 2020. Z. Yu, L. Chen, Z. Cheng, and J. Luo. paper
  19. Learning to select base classes for few-shot classification, in CVPR, 2020. L. Zhou, P. Cui, X. Jia, S. Yang, and Q. Tian. paper
  20. Few-shot NLG with pre-trained language model, in ACL, 2020. Z. Chen, H. Eavani, W. Chen, Y. Liu, and W. Y. Wang. paper code
  21. Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations, in ACL, 2020. S. Coope, T. Farghly, D. Gerz, I. Vulic, and M. Henderson. paper
  22. Structural supervision improves few-shot learning and syntactic generalization in neural language models, in EMNLP, 2020. E. Wilcox, P. Qian, R. Futrell, R. Kohita, R. Levy, and M. Ballesteros. paper code
  23. A baseline for few-shot image classification, in ICLR, 2020. G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. paper
  24. Cross-domain few-shot classification via learned feature-wise transformation, in ICLR, 2020. H. Tseng, H. Lee, J. Huang, and M. Yang. paper code
  25. Graph few-shot learning via knowledge transfer, in AAAI, 2020. H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V. Chawla, and Z. Li. paper
  26. Knowledge graph transfer network for few-shot recognition, in AAAI, 2020. R. Chen, T. Chen, X. Hui, H. Wu, G. Li, and L. Lin. paper
  27. Context-Transformer: Tackling object confusion for few-shot detection, in AAAI, 2020. Z. Yang, Y. Wang, X. Chen, J. Liu, and Y. Qiao. paper
  28. A broader study of cross-domain few-shot learning, in ECCV, 2020. Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris. paper code
  29. Selecting relevant features from a multi-domain representation for few-shot classification, in ECCV, 2020. N. Dvornik, C. Schmid, and J. Mairal. paper code
  30. Prototype completion with primitive knowledge for few-shot learning, in CVPR, 2021. B. Zhang, X. Li, Y. Ye, Z. Huang, and L. Zhang. paper code
  31. Partial is better than all: Revisiting fine-tuning strategy for few-shot learning, in AAAI, 2021. Z. Shen, Z. Liu, J. Qin, M. Savvides, and K.-T. Cheng. paper
  32. PTN: A poisson transfer network for semi-supervised few-shot learning, in AAAI, 2021. H. Huang, J. Zhang, J. Zhang, Q. Wu, and C. Xu. paper
  33. A universal representation transformer layer for few-shot image classification, in ICLR, 2021. L. Liu, W. L. Hamilton, G. Long, J. Jiang, and H. Larochelle. paper
  34. Making pre-trained language models better few-shot learners, in ACL-IJCNLP, 2021. T. Gao, A. Fisch, and D. Chen. paper code
  35. Self-supervised network evolution for few-shot classification, in IJCAI, 2021. X. Tang, Z. Teng, B. Zhang, and J. Fan. paper
  36. Calibrate before use: Improving few-shot performance of language models, in ICML, 2021. Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. paper code
  37. Language models are few-shot learners, in NeurIPS, 2020. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. paper
  38. It’s not just size that matters: Small language models are also few-shot learners, in NAACL-HLT, 2021. T. Schick, and H. Schütze. paper code
  39. Self-training improves pre-training for few-shot learning in task-oriented dialog systems, in EMNLP, 2021. F. Mi, W. Zhou, L. Kong, F. Cai, M. Huang, and B. Faltings. paper
  40. Few-shot intent detection via contrastive pre-training and fine-tuning, in EMNLP, 2021. J. Zhang, T. Bui, S. Yoon, X. Chen, Z. Liu, C. Xia, Q. H. Tran, W. Chang, and P. S. Yu. paper code
  41. Avoiding inference heuristics in few-shot prompt-based finetuning, in EMNLP, 2021. P. A. Utama, N. S. Moosavi, V. Sanh, and I. Gurevych. paper code
  42. Constrained language models yield few-shot semantic parsers, in EMNLP, 2021. R. Shin, C. H. Lin, S. Thomson, C. Chen, S. Roy, E. A. Platanios, A. Pauls, D. Klein, J. Eisner, and B. V. Durme. paper code
  43. Revisiting self-training for few-shot learning of language model, in EMNLP, 2021. Y. Chen, Y. Zhang, C. Zhang, G. Lee, R. Cheng, and H. Li. paper code
  44. Language models are few-shot butlers, in EMNLP, 2021. V. Micheli, and F. Fleuret. paper code
  45. FewshotQA: A simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models, in EMNLP, 2021. R. Chada, and P. Natarajan. paper
  46. TransPrompt: Towards an automatic transferable prompting framework for few-shot text classification, in EMNLP, 2021. C. Wang, J. Wang, M. Qiu, J. Huang, and M. Gao. paper
  47. Meta distant transfer learning for pre-trained language models, in EMNLP, 2021. C. Wang, H. Pan, M. Qiu, J. Huang, F. Yang, and Y. Zhang. paper
  48. STraTA: Self-training with task augmentation for better few-shot learning, in EMNLP, 2021. T. Vu, M. Luong, Q. V. Le, G. Simon, and M. Iyyer. paper code
  49. Few-shot image classification: Just use a library of pre-trained feature extractors and a simple classifier, in ICCV, 2021. A. Chowdhury, M. Jiang, S. Chaudhuri, and C. Jermaine. paper code
  50. On the importance of distractors for few-shot classification, in ICCV, 2021. R. Das, Y. Wang, and J. M. F. Moura. paper code
  51. A multi-mode modulator for multi-domain few-shot classification, in ICCV, 2021. Y. Liu, J. Lee, L. Zhu, L. Chen, H. Shi, and Y. Yang. paper
  52. Universal representation learning from multiple domains for few-shot classification, in ICCV, 2021. W. Li, X. Liu, and H. Bilen. paper code
  53. Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder, in ICCV, 2021. H. Liang, Q. Zhang, P. Dai, and J. Lu. paper
  54. How fine-tuning allows for effective meta-learning, in NeurIPS, 2021. K. Chua, Q. Lei, and J. D. Lee. paper
  55. Multimodal few-shot learning with frozen language models, in NeurIPS, 2021. M. Tsimpoukelli, J. Menick, S. Cabi, S. M. A. Eslami, O. Vinyals, and F. Hill. paper
  56. Grad2Task: Improved few-shot text classification using gradients for task representation, in NeurIPS, 2021. J. Wang, K. Wang, F. Rudzicz, and M. Brudno. paper
  57. True few-shot learning with language models, in NeurIPS, 2021. E. Perez, D. Kiela, and K. Cho. paper
  58. POODLE: Improving few-shot learning via penalizing out-of-distribution samples, in NeurIPS, 2021. D. Le, K. Nguyen, Q. Tran, R. Nguyen, and B. Hua. paper
  59. TOHAN: A one-step approach towards few-shot hypothesis adaptation, in NeurIPS, 2021. H. Chi, F. Liu, W. Yang, L. Lan, T. Liu, B. Han, W. Cheung, and J. Kwok. paper
  60. Task affinity with maximum bipartite matching in few-shot learning, in ICLR, 2022. C. P. Le, J. Dong, M. Soltani, and V. Tarokh. paper
  61. Differentiable prompt makes pre-trained language models better few-shot learners, in ICLR, 2022. N. Zhang, L. Li, X. Chen, S. Deng, Z. Bi, C. Tan, F. Huang, and H. Chen. paper code
  62. ConFeSS: A framework for single source cross-domain few-shot learning, in ICLR, 2022. D. Das, S. Yun, and F. Porikli. paper
  63. Switch to generalize: Domain-switch learning for cross-domain few-shot classification, in ICLR, 2022. Z. Hu, Y. Sun, and Y. Yang. paper
  64. LM-BFF-MS: Improving few-shot fine-tuning of language models based on multiple soft demonstration memory, in ACL, 2022. E. Park, D. H. Jeon, S. Kim, I. Kang, and S. Na. paper code
  65. Meta-learning via language model in-context tuning, in ACL, 2022. Y. Chen, R. Zhong, S. Zha, G. Karypis, and H. He. paper code
  66. Few-shot tabular data enrichment using fine-tuned transformer architectures, in ACL, 2022. A. Harari, and G. Katz. paper
  67. Noisy channel language model prompting for few-shot text classification, in ACL, 2022. S. Min, M. Lewis, H. Hajishirzi, and L. Zettlemoyer. paper code
  68. Prompt for extraction? PAIE: Prompting argument interaction for event argument extraction, in ACL, 2022. Y. Ma, Z. Wang, Y. Cao, M. Li, M. Chen, K. Wang, and J. Shao. paper code
  69. Are prompt-based models clueless?, in ACL, 2022. P. Kavumba, R. Takahashi, and Y. Oda. paper
  70. Prototypical verbalizer for prompt-based few-shot tuning, in ACL, 2022. G. Cui, S. Hu, N. Ding, L. Huang, and Z. Liu. paper code
  71. Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity, in ACL, 2022. Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. paper
  72. PPT: Pre-trained prompt tuning for few-shot learning, in ACL, 2022. Y. Gu, X. Han, Z. Liu, and M. Huang. paper code
  73. ASCM: An answer space clustered prompting method without answer engineering, in Findings of ACL, 2022. Z. Wang, Y. Yang, Z. Xi, B. Ma, L. Wang, R. Dong, and A. Anwar. paper code
  74. Exploiting language model prompts using similarity measures: A case study on the word-in-context task, in ACL, 2022. M. Tabasi, K. Rezaee, and M. T. Pilehvar. paper
  75. P-Tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks, in ACL, 2022. X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. paper
  76. Cutting down on prompts and parameters: Simple few-shot learning with language models, in Findings of ACL, 2022. R. L. L. IV, I. Balazevic, E. Wallace, F. Petroni, S. Singh, and S. Riedel. paper code
  77. Prompt-free and efficient few-shot learning with language models, in ACL, 2022. R. K. Mahabadi, L. Zettlemoyer, J. Henderson, L. Mathias, M. Saeidi, V. Stoyanov, and M. Yazdani. paper code
  78. Pre-training to match for unified low-shot relation extraction, in ACL, 2022. F. Liu, H. Lin, X. Han, B. Cao, and L. Sun. paper code
  79. Dual context-guided continuous prompt tuning for few-shot learning, in Findings of ACL, 2022. J. Zhou, L. Tian, H. Yu, Z. Xiao, H. Su, and J. Zhou. paper
  80. Cluster & tune: Boost cold start performance in text classification, in ACL, 2022. E. Shnarch, A. Gera, A. Halfon, L. Dankin, L. Choshen, R. Aharonov, and N. Slonim. paper code
  81. Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference, in CVPR, 2022. S. X. Hu, D. Li, J. Stühmer, M. Kim, and T. M. Hospedales. paper code

Refining Meta-learned Parameters

  1. Model-agnostic meta-learning for fast adaptation of deep networks, in ICML, 2017. C. Finn, P. Abbeel, and S. Levine. paper
  2. Bayesian model-agnostic meta-learning, in NeurIPS, 2018. J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. paper
  3. Probabilistic model-agnostic meta-learning, in NeurIPS, 2018. C. Finn, K. Xu, and S. Levine. paper
  4. Gradient-based meta-learning with learned layerwise metric and subspace, in ICML, 2018. Y. Lee and S. Choi. paper
  5. Recasting gradient-based meta-learning as hierarchical Bayes, in ICLR, 2018. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. paper
  6. Few-shot human motion prediction via meta-learning, in ECCV, 2018. L.-Y. Gui, Y.-X. Wang, D. Ramanan, and J. Moura. paper
  7. The effects of negative adaptation in model-agnostic meta-learning, arXiv preprint, 2018. T. Deleu and Y. Bengio. paper
  8. Unsupervised meta-learning for few-shot image classification, in NeurIPS, 2019. S. Khodadadeh, L. Bölöni, and M. Shah. paper
  9. Amortized bayesian meta-learning, in ICLR, 2019. S. Ravi and A. Beatson. paper
  10. Meta-learning with latent embedding optimization, in ICLR, 2019. A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. paper code
  11. Meta relational learning for few-shot link prediction in knowledge graphs, in EMNLP-IJCNLP, 2019. M. Chen, W. Zhang, W. Zhang, Q. Chen, and H. Chen. paper
  12. Adapting meta knowledge graph information for multi-hop reasoning over few-shot relations, in EMNLP-IJCNLP, 2019. X. Lv, Y. Gu, X. Han, L. Hou, J. Li, and Z. Liu. paper
  13. LGM-Net: Learning to generate matching networks for few-shot learning, in ICML, 2019. H. Li, W. Dong, X. Mei, C. Ma, F. Huang, and B.-G. Hu. paper code
  14. Meta R-CNN: Towards general solver for instance-level low-shot learning, in ICCV, 2019. X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin. paper
  15. Task agnostic meta-learning for few-shot learning, in CVPR, 2019. M. A. Jamal, and G.-J. Qi. paper
  16. Meta-transfer learning for few-shot learning, in CVPR, 2019. Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. paper code
  17. Meta-learning of neural architectures for few-shot learning, in CVPR, 2020. T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. paper
  18. Attentive weights generation for few shot learning via information maximization, in CVPR, 2020. Y. Guo, and N.-M. Cheung. paper
  19. Few-shot open-set recognition using meta-learning, in CVPR, 2020. B. Liu, H. Kang, H. Li, G. Hua, and N. Vasconcelos. paper
  20. Incremental few-shot object detection, in CVPR, 2020. J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang. paper
  21. Automated relational meta-learning, in ICLR, 2020. H. Yao, X. Wu, Z. Tao, Y. Li, B. Ding, R. Li, and Z. Li. paper
  22. Meta-learning with warped gradient descent, in ICLR, 2020. S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. paper
  23. Meta-learning without memorization, in ICLR, 2020. M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn. paper
  24. ES-MAML: Simple Hessian-free meta learning, in ICLR, 2020. X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang. paper
  25. Self-supervised tuning for few-shot segmentation, in IJCAI, 2020. K. Zhu, W. Zhai, and Y. Cao. paper
  26. Multi-attention meta learning for few-shot fine-grained image recognition, in IJCAI, 2020. Y. Zhu, C. Liu, and S. Jiang. paper
  27. An ensemble of epoch-wise empirical Bayes for few-shot learning, in ECCV, 2020. Y. Liu, B. Schiele, and Q. Sun. paper code
  28. Incremental few-shot meta-learning via indirect discriminant alignment, in ECCV, 2020. Q. Liu, O. Majumder, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto. paper
  29. Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning, in ECCV, 2020. J. Kim, H. Kim, and G. Kim. paper code
  30. Bayesian meta-learning for the few-shot setting via deep kernels, in NeurIPS, 2020. M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and A. J. Storkey. paper code
  31. OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification, in NeurIPS, 2020. T. Jeong, and H. Kim. paper code
  32. Unraveling meta-learning: Understanding feature representations for few-shot tasks, in ICML, 2020. M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. paper code
  33. Node classification on graphs with few-shot novel labels via meta transformed network embedding, in NeurIPS, 2020. L. Lan, P. Wang, X. Du, K. Song, J. Tao, and X. Guan. paper
  34. Adversarially robust few-shot learning: A meta-learning approach, in NeurIPS, 2020. M. Goldblum, L. Fowl, and T. Goldstein. paper code
  35. BOIL: Towards representation change for few-shot learning, in ICLR, 2021. J. Oh, H. Yoo, C. Kim, and S. Yun. paper code
  36. Few-shot open-set recognition by transformation consistency, in CVPR, 2021. M. Jeong, S. Choi, and C. Kim. paper
  37. Improving generalization in meta-learning via task augmentation, in ICML, 2021. H. Yao, L. Huang, L. Zhang, Y. Wei, L. Tian, J. Zou, J. Huang, and Z. Li. paper
  38. A representation learning perspective on the importance of train-validation splitting in meta-learning, in ICML, 2021. N. Saunshi, A. Gupta, and W. Hu. paper code
  39. Data augmentation for meta-learning, in ICML, 2021. R. Ni, M. Goldblum, A. Sharaf, K. Kong, and T. Goldstein. paper code
  40. Task cooperation for semi-supervised few-shot learning, in AAAI, 2021. H. Ye, X. Li, and D.-C. Zhan. paper
  41. Conditional self-supervised learning for few-shot classification, in IJCAI, 2021. Y. An, H. Xue, X. Zhao, and L. Zhang. paper
  42. Cross-domain few-shot classification via adversarial task augmentation, in IJCAI, 2021. H. Wang, and Z.-H. Deng. paper code
  43. DReCa: A general task augmentation strategy for few-shot natural language inference, in NAACL-HLT, 2021. S. Murty, T. Hashimoto, and C. D. Manning. paper
  44. MetaXL: Meta representation transformation for low-resource cross-lingual learning, in NAACL-HLT, 2021. M. Xia, G. Zheng, S. Mukherjee, M. Shokouhi, G. Neubig, and A. H. Awadallah. paper code
  45. Meta-learning with task-adaptive loss function for few-shot learning, in ICCV, 2021. S. Baik, J. Choi, H. Kim, D. Cho, J. Min, and K. M. Lee. paper code
  46. Meta-Baseline: Exploring simple meta-learning for few-shot learning, in ICCV, 2021. Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang. paper
  47. A lazy approach to long-horizon gradient-based meta-learning, in ICCV, 2021. M. A. Jamal, L. Wang, and B. Gong. paper
  48. Task-aware part mining network for few-shot learning, in ICCV, 2021. J. Wu, T. Zhang, Y. Zhang, and F. Wu. paper
  49. Binocular mutual learning for improving few-shot classification, in ICCV, 2021. Z. Zhou, X. Qiu, J. Xie, J. Wu, and C. Zhang. paper code
  50. Meta-learning with an adaptive task scheduler, in NeurIPS, 2021. H. Yao, Y. Wang, Y. Wei, P. Zhao, M. Mahdavi, D. Lian, and C. Finn. paper
  51. Memory efficient meta-learning with large images, in NeurIPS, 2021. J. Bronskill, D. Massiceti, M. Patacchiola, K. Hofmann, S. Nowozin, and R. Turner. paper
  52. EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization, in NeurIPS, 2021. O. Bohdal, Y. Yang, and T. Hospedales. paper
  53. Towards enabling meta-learning from target models, in NeurIPS, 2021. S. Lu, H. Ye, L. Gan, and D. Zhan. paper
  54. The role of global labels in few-shot classification and how to infer them, in NeurIPS, 2021. R. Wang, M. Pontil, and C. Ciliberto. paper
  55. How to train your MAML to excel in few-shot classification, in ICLR, 2022. H. Ye, and W. Chao. paper code
  56. Meta-learning with fewer tasks through task interpolation, in ICLR, 2022. H. Yao, L. Zhang, and C. Finn. paper code
  57. Continuous-time meta-learning with forward mode differentiation, in ICLR, 2022. T. Deleu, D. Kanaa, L. Feng, G. Kerg, Y. Bengio, G. Lajoie, and P. Bacon. paper
  58. Bootstrapped meta-learning, in ICLR, 2022. S. Flennerhag, Y. Schroecker, T. Zahavy, H. v. Hasselt, D. Silver, and S. Singh. paper
  59. Learning prototype-oriented set representations for meta-learning, in ICLR, 2022. D. d. Guo, L. Tian, M. Zhang, M. Zhou, and H. Zha. paper
  60. Dynamic kernel selection for improved generalization and memory efficiency in meta-learning, in CVPR, 2022. A. Chavan, R. Tiwari, U. Bamba, and D. K. Gupta. paper code
  61. What matters for meta-learning vision regression tasks?, in CVPR, 2022. N. Gao, H. Ziesche, N. A. Vien, M. Volpp, and G. Neumann. paper code
  62. Multidimensional belief quantification for label-efficient meta-learning, in CVPR, 2022. D. S. Pandey, and Q. Yu. paper

Learning Search Steps

  1. Optimization as a model for few-shot learning, in ICLR, 2017. S. Ravi and H. Larochelle. paper code
  2. Meta Navigator: Search for a good adaptation policy for few-shot learning, in ICCV, 2021. C. Zhang, H. Ding, G. Lin, R. Li, C. Wang, and C. Shen. paper

Applications

Computer Vision

  1. Learning robust visual-semantic embeddings, in CVPR, 2017. Y.-H. Tsai, L.-K. Huang, and R. Salakhutdinov. paper
  2. One-shot action localization by learning sequence matching network, in CVPR, 2018. H. Yang, X. He, and F. Porikli. paper
  3. Incremental few-shot learning for pedestrian attribute recognition, in EMNLP, 2018. L. Xiang, X. Jin, G. Ding, J. Han, and L. Li. paper
  4. Few-shot video-to-video synthesis, in NeurIPS, 2019. T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro. paper code
  5. Few-shot object detection via feature reweighting, in ICCV, 2019. B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell. paper code
  6. Few-shot unsupervised image-to-image translation, in ICCV, 2019. M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz. paper code
  7. Feature weighting and boosting for few-shot segmentation, in ICCV, 2019. K. Nguyen, and S. Todorovic. paper
  8. Few-shot adaptive gaze estimation, in ICCV, 2019. S. Park, S. D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, and J. Kautz. paper
  9. AMP: Adaptive masked proxies for few-shot segmentation, in ICCV, 2019. M. Siam, B. N. Oreshkin, and M. Jagersand. paper code
  10. Few-shot generalization for single-image 3D reconstruction via priors, in ICCV, 2019. B. Wallace, and B. Hariharan. paper
  11. Few-shot adversarial learning of realistic neural talking head models, in ICCV, 2019. E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. paper code
  12. Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation, in ICCV, 2019. C. Zhang, G. Lin, F. Liu, J. Guo, Q. Wu, and R. Yao. paper
  13. Time-conditioned action anticipation in one shot, in CVPR, 2019. Q. Ke, M. Fritz, and B. Schiele. paper
  14. Few-shot learning with localization in realistic settings, in CVPR, 2019. D. Wertheimer, and B. Hariharan. paper code
  15. Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in CVPR, 2019. Y. Yu, G. Liu, and J.-M. Odobez. paper
  16. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning, in CVPR, 2019. C. Zhang, G. Lin, F. Liu, R. Yao, and C. Shen. paper code
  17. Multi-level Semantic Feature Augmentation for One-shot Learning, in TIP, 2019. Z. Chen, Y. Fu, Y. Zhang, Y.-G. Jiang, X. Xue, and L. Sigal. paper code
  18. Few-shot pill recognition, in CVPR, 2020. S. Ling, A. Pastor, J. Li, Z. Che, J. Wang, J. Kim, and P. L. Callet. paper
  19. LT-Net: Label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation, in CVPR, 2020. S. Wang, S. Cao, D. Wei, R. Wang, K. Ma, L. Wang, D. Meng, and Y. Zheng. paper
  20. 3FabRec: Fast few-shot face alignment by reconstruction, in CVPR, 2020. B. Browatzki, and C. Wallraven. paper
  21. Few-shot video classification via temporal alignment, in CVPR, 2020. K. Cao, J. Ji, Z. Cao, C.-Y. Chang, J. C. Niebles. paper
  22. One-shot adversarial attacks on visual tracking with dual attention, in CVPR, 2020. X. Chen, X. Yan, F. Zheng, Y. Jiang, S.-T. Xia, Y. Zhao, and R. Ji. paper
  23. FGN: Fully guided network for few-shot instance segmentation, in CVPR, 2020. Z. Fan, J.-G. Yu, Z. Liang, J. Ou, C. Gao, G.-S. Xia, and Y. Li. paper
  24. CRNet: Cross-reference networks for few-shot segmentation, in CVPR, 2020. W. Liu, C. Zhang, G. Lin, and F. Liu. paper
  25. Revisiting pose-normalization for fine-grained few-shot recognition, in CVPR, 2020. L. Tang, D. Wertheimer, and B. Hariharan. paper
  26. Few-shot learning of part-specific probability space for 3D shape segmentation, in CVPR, 2020. L. Wang, X. Li, and Y. Fang. paper
  27. Semi-supervised learning for few-shot image-to-image translation, in CVPR, 2020. Y. Wang, S. Khan, A. Gonzalez-Garcia, J. van de Weijer, and F. S. Khan. paper
  28. Multi-domain learning for accurate and few-shot color constancy, in CVPR, 2020. J. Xiao, S. Gu, and L. Zhang. paper
  29. One-shot domain adaptation for face generation, in CVPR, 2020. C. Yang, and S.-N. Lim. paper
  30. MetaPix: Few-shot video retargeting, in ICLR, 2020. J. Lee, D. Ramanan, and R. Girdhar. paper
  31. Few-shot human motion prediction via learning novel motion dynamics, in IJCAI, 2020. C. Zang, M. Pei, and Y. Kong. paper
  32. Shaping visual representations with language for few-shot classification, in ACL, 2020. J. Mu, P. Liang, and N. D. Goodman. paper
  33. MarioNETte: Few-shot face reenactment preserving identity of unseen targets, in AAAI, 2020. S. Ha, M. Kersner, B. Kim, S. Seo, and D. Kim. paper
  34. One-shot learning for long-tail visual relation detection, in AAAI, 2020. W. Wang, M. Wang, S. Wang, G. Long, L. Yao, G. Qi, and Y. Chen. paper code
  35. Differentiable meta-learning model for few-shot semantic segmentation, in AAAI, 2020. P. Tian, Z. Wu, L. Qi, L. Wang, Y. Shi, and Y. Gao. paper
  36. Part-aware prototype network for few-shot semantic segmentation, in ECCV, 2020. Y. Liu, X. Zhang, S. Zhang, and X. He. paper code
  37. Prototype mixture models for few-shot semantic segmentation, in ECCV, 2020. B. Yang, C. Liu, B. Li, J. Jiao, and Q. Ye. paper code
  38. Self-supervision with superpixels: Training few-shot medical image segmentation without annotation, in ECCV, 2020. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert. paper code
  39. Few-shot action recognition with permutation-invariant attention, in ECCV, 2020. H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Koniusz. paper
  40. Few-shot compositional font generation with dual memory, in ECCV, 2020. J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee. paper code
  41. Few-shot object detection and viewpoint estimation for objects in the wild, in ECCV, 2020. Y. Xiao, and R. Marlet. paper
  42. Few-shot scene-adaptive anomaly detection, in ECCV, 2020. Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang. paper code
  43. Few-shot semantic segmentation with democratic attention networks, in ECCV, 2020. H. Wang, X. Zhang, Y. Hu, Y. Yang, X. Cao, and X. Zhen. paper
  44. Few-shot single-view 3-D object reconstruction with compositional priors, in ECCV, 2020. M. Michalkiewicz, S. Parisot, S. Tsogkas, M. Baktashmotlagh, A. Eriksson, and E. Belilovsky. paper
  45. COCO-FUNIT: Few-shot unsupervised image translation with a content conditioned style encoder, in ECCV, 2020. K. Saito, K. Saenko, and M. Liu. paper code
  46. Deep complementary joint model for complex scene registration and few-shot segmentation on medical images, in ECCV, 2020. Y. He, T. Li, G. Yang, Y. Kong, Y. Chen, H. Shu, J. Coatrieux, J. Dillenseger, and S. Li. paper
  47. Multi-scale positive sample refinement for few-shot object detection, in ECCV, 2020. J. Wu, S. Liu, D. Huang, and Y. Wang. paper code
  48. Large-scale few-shot learning via multi-modal knowledge discovery, in ECCV, 2020. S. Wang, J. Yue, J. Liu, Q. Tian, and M. Wang. paper
  49. Graph convolutional networks for learning with few clean and many noisy labels, in ECCV, 2020. A. Iscen, G. Tolias, Y. Avrithis, O. Chum, and C. Schmid. paper
  50. Self-supervised few-shot learning on point clouds, in NeurIPS, 2020. C. Sharma, and M. Kaul. paper code
  51. Restoring negative information in few-shot object detection, in NeurIPS, 2020. Y. Yang, F. Wei, M. Shi, and G. Li. paper code
  52. Few-shot image generation with elastic weight consolidation, in NeurIPS, 2020. Y. Li, R. Zhang, J. Lu, and E. Shechtman. paper
  53. Few-shot visual reasoning with meta-analogical contrastive learning, in NeurIPS, 2020. Y. Kim, J. Shin, E. Yang, and S. J. Hwang. paper
  54. CrossTransformers: spatially-aware few-shot transfer, in NeurIPS, 2020. C. Doersch, A. Gupta, and A. Zisserman. paper
  55. Make one-shot video object segmentation efficient again, in NeurIPS, 2020. T. Meinhardt, and L. Leal-Taixé. paper code
  56. Frustratingly simple few-shot object detection, in ICML, 2020. X. Wang, T. E. Huang, J. Gonzalez, T. Darrell, and F. Yu. paper code
  57. Adversarial style mining for one-shot unsupervised domain adaptation, in NeurIPS, 2020. Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang. paper code
  58. Disentangling 3D prototypical networks for few-shot concept learning, in ICLR, 2021. M. Prabhudesai, S. Lal, D. Patil, H. Tung, A. W. Harley, and K. Fragkiadaki. paper
  59. Learning normal dynamics in videos with meta prototype network, in CVPR, 2021. H. Lv, C. Chen, Z. Cui, C. Xu, Y. Li, and J. Yang. paper code
  60. Learning dynamic alignment via meta-filter for few-shot learning, in CVPR, 2021. C. Xu, Y. Fu, C. Liu, C. Wang, J. Li, F. Huang, L. Zhang, and X. Xue. paper
  61. Delving deep into many-to-many attention for few-shot video object segmentation, in CVPR, 2021. H. Chen, H. Wu, N. Zhao, S. Ren, and S. He. paper code
  62. Adaptive prototype learning and allocation for few-shot segmentation, in CVPR, 2021. G. Li, V. Jampani, L. Sevilla-Lara, D. Sun, J. Kim, and J. Kim. paper code
  63. FAPIS: A few-shot anchor-free part-based instance segmenter, in CVPR, 2021. K. Nguyen, and S. Todorovic. paper
  64. FSCE: Few-shot object detection via contrastive proposal encoding, in CVPR, 2021. B. Sun, B. Li, S. Cai, Y. Yuan, and C. Zhang. paper code
  65. Few-shot 3D point cloud semantic segmentation, in CVPR, 2021. N. Zhao, T. Chua, and G. H. Lee. paper code
  66. Generalized few-shot object detection without forgetting, in CVPR, 2021. Z. Fan, Y. Ma, Z. Li, and J. Sun. paper
  67. Few-shot human motion transfer by personalized geometry and texture modeling, in CVPR, 2021. Z. Huang, X. Han, J. Xu, and T. Zhang. paper code
  68. Labeled from unlabeled: Exploiting unlabeled data for few-shot deep HDR deghosting, in CVPR, 2021. K. R. Prabhakar, G. Senthil, S. Agrawal, R. V. Babu, and R. K. S. S. Gorthi. paper
  69. Few-shot transformation of common actions into time and space, in CVPR, 2021. P. Yang, P. Mettes, and C. G. M. Snoek. paper code
  70. Temporal-relational CrossTransformers for few-shot action recognition, in CVPR, 2021. T. Perrett, A. Masullo, T. Burghardt, M. Mirmehdi, and D. Damen. paper
  71. pixelNeRF: Neural radiance fields from one or few images, in CVPR, 2021. A. Yu, V. Ye, M. Tancik, and A. Kanazawa. paper code
  72. Hallucination improves few-shot object detection, in CVPR, 2021. W. Zhang, and Y. Wang. paper
  73. Few-shot object detection via classification refinement and distractor retreatment, in CVPR, 2021. Y. Li, H. Zhu, Y. Cheng, W. Wang, C. S. Teo, C. Xiang, P. Vadakkepat, and T. H. Lee. paper
  74. Dense relation distillation with context-aware aggregation for few-shot object detection, in CVPR, 2021. H. Hu, S. Bai, A. Li, J. Cui, and L. Wang. paper code
  75. Few-shot segmentation without meta-learning: A good transductive inference is all you need? , in CVPR, 2021. M. Boudiaf, H. Kervadec, Z. I. Masud, P. Piantanida, I. B. Ayed, and J. Dolz. paper code
  76. Few-shot image generation via cross-domain correspondence, in CVPR, 2021. U. Ojha, Y. Li, J. Lu, A. A. Efros, Y. J. Lee, E. Shechtman, and R. Zhang. paper
  77. Self-guided and cross-guided learning for few-shot segmentation, in CVPR, 2021. B. Zhang, J. Xiao, and T. Qin. paper code
  78. Anti-aliasing semantic reconstruction for few-shot semantic segmentation, in CVPR, 2021. B. Liu, Y. Ding, J. Jiao, X. Ji, and Q. Ye. paper
  79. Beyond max-margin: Class margin equilibrium for few-shot object detection, in CVPR, 2021. B. Li, B. Yang, C. Liu, F. Liu, R. Ji, and Q. Ye. paper code
  80. Incremental few-shot instance segmentation, in CVPR, 2021. D. A. Ganea, B. Boom, and R. Poppe. paper code
  81. Scale-aware graph neural network for few-shot semantic segmentation, in CVPR, 2021. G. Xie, J. Liu, H. Xiong, and L. Shao. paper
  82. Semantic relation reasoning for shot-stable few-shot object detection, in CVPR, 2021. C. Zhu, F. Chen, U. Ahmed, Z. Shen, and M. Savvides. paper
  83. Accurate few-shot object detection with support-query mutual guidance and hybrid loss, in CVPR, 2021. L. Zhang, S. Zhou, J. Guan, and J. Zhang. paper
  84. Transformation invariant few-shot object detection, in CVPR, 2021. A. Li, and Z. Li. paper
  85. MetaHTR: Towards writer-adaptive handwritten text recognition, in CVPR, 2021. A. K. Bhunia, S. Ghose, A. Kumar, P. N. Chowdhury, A. Sain, and Y. Song. paper
  86. What if we only use real datasets for scene text recognition? Toward scene text recognition with fewer labels, in CVPR, 2021. J. Baek, Y. Matsui, and K. Aizawa. paper code
  87. Few-shot font generation with localized style representations and factorization, in AAAI, 2021. S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. paper code
  88. Attributes-guided and pure-visual attention alignment for few-shot recognition, in AAAI, 2021. S. Huang, M. Zhang, Y. Kang, and D. Wang. paper code
  89. One-shot face reenactment using appearance adaptive normalization, in AAAI, 2021. G. Yao, Y. Yuan, T. Shao, S. Li, S. Liu, Y. Liu, M. Wang, and K. Zhou. paper
  90. FL-MSRE: A few-shot learning based approach to multimodal social relation extraction, in AAAI, 2021. H. Wan, M. Zhang, J. Du, Z. Huang, Y. Yang, and J. Z. Pan. paper code
  91. StarNet: Towards weakly supervised few-shot object detection, in AAAI, 2021. L. Karlinsky, J. Shtok, A. Alfassy, M. Lichtenstein, S. Harary, E. Schwartz, S. Doveh, P. Sattigeri, R. Feris, A. Bronstein, and R. Giryes. paper code
  92. Progressive one-shot human parsing, in AAAI, 2021. H. He, J. Zhang, B. Thuraisingham, and D. Tao. paper code
  93. Knowledge is power: Hierarchical-knowledge embedded meta-learning for visual reasoning in artistic domains, in KDD, 2021. W. Zheng, L. Yan, C. Gou, and F.-Y. Wang. paper
  94. MEDA: Meta-learning with data augmentation for few-shot text classification, in IJCAI, 2021. P. Sun, Y. Ouyang, W. Zhang, and X.-Y. Dai. paper
  95. Learning implicit temporal alignment for few-shot video classification, in IJCAI, 2021. S. Zhang, J. Zhou, and X. He. paper code
  96. Few-shot neural human performance rendering from sparse RGBD videos, in IJCAI, 2021. A. Pang, X. Chen, H. Luo, M. Wu, J. Yu, and L. Xu. paper
  97. Uncertainty-aware few-shot image classification, in IJCAI, 2021. Z. Zhang, C. Lan, W. Zeng, Z. Chen, and S. Chan. paper
  98. Few-shot learning with part discovery and augmentation from unlabeled images, in IJCAI, 2021. W. Chen, C. Si, W. Wang, L. Wang, Z. Wang, and T. Tan. paper
  99. Few-shot partial-label learning, in IJCAI, 2021. Y. Zhao, G. Yu, L. Liu, Z. Yan, L. Cui, and C. Domeniconi. paper
  100. One-shot affordance detection, in IJCAI, 2021. H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. paper
  101. DeFRCN: Decoupled faster R-CNN for few-shot object detection, in ICCV, 2021. L. Qiao, Y. Zhao, Z. Li, X. Qiu, J. Wu, and C. Zhang. paper
  102. Learning meta-class memory for few-shot semantic segmentation, in ICCV, 2021. Z. Wu, X. Shi, G. Lin, and J. Cai. paper
  103. UVStyle-Net: Unsupervised few-shot learning of 3D style similarity measure for B-Reps, in ICCV, 2021. P. Meltzer, H. Shayani, A. Khasahmadi, P. K. Jayaraman, A. Sanghi, and J. Lambourne. paper
  104. LoFGAN: Fusing local representations for few-shot image generation, in ICCV, 2021. Z. Gu, W. Li, J. Huo, L. Wang, and Y. Gao. paper
  105. Recurrent mask refinement for few-shot medical image segmentation, in ICCV, 2021. H. Tang, X. Liu, S. Sun, X. Yan, and X. Xie. paper code
  106. H3D-Net: Few-shot high-fidelity 3D head reconstruction, in ICCV, 2021. E. Ramon, G. Triginer, J. Escur, A. Pumarola, J. Garcia, X. Giró-i-Nieto, and F. Moreno-Noguer. paper
  107. Learned spatial representations for few-shot talking-head synthesis, in ICCV, 2021. M. Meshry, S. Suri, L. S. Davis, and A. Shrivastava. paper
  108. Putting NeRF on a diet: Semantically consistent few-shot view synthesis, in ICCV, 2021. A. Jain, M. Tancik, and P. Abbeel. paper
  109. Hypercorrelation squeeze for few-shot segmentation, in ICCV, 2021. J. Min, D. Kang, and M. Cho. paper code
  110. Few-shot semantic segmentation with cyclic memory network, in ICCV, 2021. G. Xie, H. Xiong, J. Liu, Y. Yao, and L. Shao. paper
  111. Simpler is better: Few-shot semantic segmentation with classifier weight transformer, in ICCV, 2021. Z. Lu, S. He, X. Zhu, L. Zhang, Y. Song, and T. Xiang. paper code
  112. Unsupervised few-shot action recognition via action-appearance aligned meta-adaptation, in ICCV, 2021. J. Patravali, G. Mittal, Y. Yu, F. Li, and M. Chen. paper
  113. Multiple heads are better than one: few-shot font generation with multiple localized experts, in ICCV, 2021. S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. paper code
  114. Mining latent classes for few-shot segmentation, in ICCV, 2021. L. Yang, W. Zhuo, L. Qi, Y. Shi, and Y. Gao. paper code
  115. Partner-assisted learning for few-shot image classification, in ICCV, 2021. J. Ma, H. Xie, G. Han, S. Chang, A. Galstyan, and W. Abd-Almageed. paper
  116. Hierarchical graph attention network for few-shot visual-semantic learning, in ICCV, 2021. C. Yin, K. Wu, Z. Che, B. Jiang, Z. Xu, and J. Tang. paper
  117. Video pose distillation for few-shot, fine-grained sports action recognition, in ICCV, 2021. J. Hong, M. Fisher, M. Gharbi, and K. Fatahalian. paper
  118. Universal-prototype enhancing for few-shot object detection, in ICCV, 2021. A. Wu, Y. Han, L. Zhu, and Y. Yang. paper code
  119. Query adaptive few-shot object detection with heterogeneous graph convolutional networks, in ICCV, 2021. G. Han, Y. He, S. Huang, J. Ma, and S. Chang. paper
  120. Few-shot visual relationship co-localization, in ICCV, 2021. R. Teotia, V. Mishra, M. Maheshwari, and A. Mishra. paper code
  121. Shallow Bayesian meta learning for real-world few-shot recognition, in ICCV, 2021. X. Zhang, D. Meng, H. Gouk, and T. M. Hospedales. paper code
  122. Super-resolving cross-domain face miniatures by peeking at one-shot exemplar, in ICCV, 2021. P. Li, X. Yu, and Y. Yang. paper
  123. Few-shot segmentation via cycle-consistent transformer, in NeurIPS, 2021. G. Zhang, G. Kang, Y. Yang, and Y. Wei. paper
  124. Generalized and discriminative few-shot object detection via SVD-dictionary enhancement, in NeurIPS, 2021. A. WU, S. Zhao, C. Deng, and W. Liu. paper
  125. Re-ranking for image retrieval and transductive few-shot classification, in NeurIPS, 2021. X. SHEN, Y. Xiao, S. Hu, O. Sbai, and M. Aubry. paper
  126. Neural view synthesis and matching for semi-supervised few-shot learning of 3D pose, in NeurIPS, 2021. A. Wang, S. Mei, A. L. Yuille, and A. Kortylewski. paper
  127. MetaAvatar: Learning animatable clothed human models from few depth images, in NeurIPS, 2021. S. Wang, M. Mihajlovic, Q. Ma, A. Geiger, and S. Tang. paper
  128. Few-shot object detection via association and discrimination, in NeurIPS, 2021. Y. Cao, J. Wang, Y. Jin, T. Wu, K. Chen, Z. Liu, and D. Lin. paper
  129. Rectifying the shortcut learning of background for few-shot learning, in NeurIPS, 2021. X. Luo, L. Wei, L. Wen, J. Yang, L. Xie, Z. Xu, and Q. Tian. paper
  130. D2C: Diffusion-decoding models for few-shot conditional generation, in NeurIPS, 2021. A. Sinha, J. Song, C. Meng, and S. Ermon. paper
  131. Few-shot backdoor attacks on visual object tracking, in ICLR, 2022. Y. Li, H. Zhong, X. Ma, Y. Jiang, and S. Xia. paper code
  132. Temporal alignment prediction for supervised representation learning and few-shot sequence classification, in ICLR, 2022. B. Su, and J. Wen. paper code
  133. Learning non-target knowledge for few-shot semantic segmentation, in CVPR, 2022. Y. Liu, N. Liu, Q. Cao, X. Yao, J. Han, and L. Shao. paper
  134. Learning what not to segment: A new perspective on few-shot segmentation, in CVPR, 2022. C. Lang, G. Cheng, B. Tu, and J. Han. paper code
  135. Few-shot keypoint detection with uncertainty learning for unseen species, in CVPR, 2022. C. Lu, and P. Koniusz. paper
  136. XMP-Font: Self-supervised cross-modality pre-training for few-shot font generation, in CVPR, 2022. W. Liu, F. Liu, F. Ding, Q. He, and Z. Yi. paper
  137. Spatio-temporal relation modeling for few-shot action recognition, in CVPR, 2022. A. Thatipelli, S. Narayan, S. Khan, R. M. Anwer, F. S. Khan, and B. Ghanem. paper code
  138. Attribute group editing for reliable few-shot image generation, in CVPR, 2022. G. Ding, X. Han, S. Wang, S. Wu, X. Jin, D. Tu, and Q. Huang. paper code
  139. Few-shot backdoor defense using Shapley estimation, in CVPR, 2022. J. Guan, Z. Tu, R. He, and D. Tao. paper
  140. Hybrid relation guided set matching for few-shot action recognition, in CVPR, 2022. X. Wang, S. Zhang, Z. Qing, M. Tang, Z. Zuo, C. Gao, R. Jin, and N. Sang. paper code
  141. Label, verify, correct: A simple few shot object detection method, in CVPR, 2022. P. Kaul, W. Xie, and A. Zisserman. paper
  142. InfoNeRF: Ray entropy minimization for few-shot neural volume rendering, in CVPR, 2022. M. Kim, S. Seo, and B. Han. paper
  143. A closer look at few-shot image generation, in CVPR, 2022. Y. Zhao, H. Ding, H. Huang, and N. Cheung. paper code
  144. Motion-modulated temporal fragment alignment network for few-shot action recognition, in CVPR, 2022. J. Wu, T. Zhang, Z. Zhang, F. Wu, and Y. Zhang. paper
  145. Kernelized few-shot object detection with efficient integral aggregation, in CVPR, 2022. S. Zhang, L. Wang, N. Murray, and P. Koniusz. paper code
  146. FS6D: Few-shot 6D pose estimation of novel objects, in CVPR, 2022. Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen. paper
  147. Look closer to supervise better: One-shot font generation via component-based discriminator, in CVPR, 2022. Y. Kong, C. Luo, W. Ma, Q. Zhu, S. Zhu, N. Yuan, and L. Jin. paper
  148. Generalized few-shot semantic segmentation, in CVPR, 2022. Z. Tian, X. Lai, L. Jiang, S. Liu, M. Shu, H. Zhao, and J. Jia. paper code
  149. Which images to label for few-shot medical landmark detection?, in CVPR, 2022. Q. Quan, Q. Yao, J. Li, and S. K. Zhou. paper
  150. Dynamic prototype convolution network for few-shot semantic segmentation, in CVPR, 2022. J. Liu, Y. Bao, G. Xie, H. Xiong, J. Sonke, and E. Gavves. paper
  151. OSOP: A multi-stage one shot object pose estimation framework, in CVPR, 2022. I. Shugurov, F. Li, B. Busam, and S. Ilic. paper
  152. Semantic-aligned fusion transformer for one-shot object detection, in CVPR, 2022. Y. Zhao, X. Guo, and Y. Lu. paper
  153. OnePose: One-shot object pose estimation without CAD models, in CVPR, 2022. J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou. paper code
  154. Few-shot object detection with fully cross-transformer, in CVPR, 2022. G. Han, J. Ma, S. Huang, L. Chen, and S. Chang. paper
  155. Learning to memorize feature hallucination for one-shot image generation, in CVPR, 2022. Y. Xie, Y. Fu, Y. Tai, Y. Cao, J. Zhu, and C. Wang. paper
  156. Few-shot font generation by learning fine-grained local styles, in CVPR, 2022. L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han, J. Liu, E. Ding, and J. Wang. paper
  157. Balanced and hierarchical relation learning for one-shot object detection, in CVPR, 2022. H. Yang, S. Cai, H. Sheng, B. Deng, J. Huang, X. Hua, Y. Tang, and Y. Zhang. paper
  158. Few-shot head swapping in the wild, in CVPR, 2022. C. Shu, H. Wu, H. Zhou, J. Liu, Z. Hong, C. Ding, J. Han, J. Liu, E. Ding, and J. Wang. paper
  159. Integrative few-shot learning for classification and segmentation, in CVPR, 2022. D. Kang, and M. Cho. paper
  160. Attribute surrogates learning and spectral tokens pooling in transformers for few-shot learning, in CVPR, 2022. Y. He, W. Liang, D. Zhao, H. Zhou, W. Ge, Y. Yu, and W. Zhang. paper code
  161. Task discrepancy maximization for fine-grained few-shot classification, in CVPR, 2022. S. Lee, W. Moon, and J. Heo. paper

Robotics

  1. Towards one shot learning by imitation for humanoid robots, in ICRA, 2010. Y. Wu and Y. Demiris. paper
  2. Learning manipulation actions from a few demonstrations, in ICRA, 2013. N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss. paper
  3. Learning assistive strategies from a few user-robot interactions: Model-based reinforcement learning approach, in ICRA, 2016. M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto. paper
  4. One-shot imitation learning, in NeurIPS, 2017. Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba. paper
  5. Meta-learning language-guided policy learning, in ICLR, 2019. J. D. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. DeNero, P. Abbeel, and S. Levine. paper
  6. Meta reinforcement learning with autonomous inference of subtask dependencies, in ICLR, 2020. S. Sohn, H. Woo, J. Choi, and H. Lee. paper
  7. Watch, try, learn: Meta-learning from demonstrations and rewards, in ICLR, 2020. A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan, S. Levine, and C. Finn. paper
  8. Few-shot Bayesian imitation learning with logical program policies, in AAAI, 2020. T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum. paper
  9. One solution is not all you need: Few-shot extrapolation via structured MaxEnt RL, in NeurIPS, 2020. S. Kumar, A. Kumar, S. Levine, and C. Finn. paper
  10. Bowtie networks: Generative modeling for joint few-shot recognition and novel-view synthesis, in ICLR, 2021. Z. Bao, Y. Wang, and M. Hebert. paper
  11. Demonstration-conditioned reinforcement learning for few-shot imitation, in ICML, 2021. C. R. Dance, J. Perez, and T. Cachet. paper
  12. Hierarchical few-shot imitation with skill transition models, in ICLR, 2022. K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, and M. Laskin. paper

Natural Language Processing

  1. High-risk learning: Acquiring new word vectors from tiny data, in EMNLP, 2017. A. Herbelot and M. Baroni. paper
  2. MetaEXP: Interactive explanation and exploration of large knowledge graphs, in TheWebConf, 2018. F. Behrens, S. Bischoff, P. Ladenburger, J. Rückin, L. Seidel, F. Stolp, M. Vaichenker, A. Ziegler, D. Mottin, F. Aghaei, E. Müller, M. Preusse, N. Müller, and M. Hunger. paper code
  3. Few-shot representation learning for out-of-vocabulary words, in ACL, 2019. Z. Hu, T. Chen, K.-W. Chang, and Y. Sun. paper
  4. Learning to customize model structures for few-shot dialogue generation tasks, in ACL, 2020. Y. Song, Z. Liu, W. Bi, R. Yan, and M. Zhang. paper
  5. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network, in ACL, 2020. Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, and T. Liu. paper
  6. Meta-reinforced multi-domain state generator for dialogue systems, in ACL, 2020. Y. Huang, J. Feng, M. Hu, X. Wu, X. Du, and S. Ma. paper
  7. Few-shot knowledge graph completion, in AAAI, 2020. C. Zhang, H. Yao, C. Huang, M. Jiang, Z. Li, and N. V. Chawla. paper
  8. Universal natural language processing with limited annotations: Try few-shot textual entailment as a start, in EMNLP, 2020. W. Yin, N. F. Rajani, D. Radev, R. Socher, and C. Xiong. paper code
  9. Simple and effective few-shot named entity recognition with structured nearest neighbor learning, in EMNLP, 2020. Y. Yang, and A. Katiyar. paper code
  10. Discriminative nearest neighbor few-shot intent detection by transferring natural language inference, in EMNLP, 2020. J. Zhang, K. Hashimoto, W. Liu, C. Wu, Y. Wan, P. Yu, R. Socher, and C. Xiong. paper code
  11. Few-shot learning for opinion summarization, in EMNLP, 2020. A. Bražinskas, M. Lapata, and I. Titov. paper code
  12. Adaptive attentional network for few-shot knowledge graph completion, in EMNLP, 2020. J. Sheng, S. Guo, Z. Chen, J. Yue, L. Wang, T. Liu, and H. Xu. paper code
  13. Few-shot complex knowledge base question answering via meta reinforcement learning, in EMNLP, 2020. Y. Hua, Y. Li, G. Haffari, G. Qi, and T. Wu. paper code
  14. Self-supervised meta-learning for few-shot natural language classification tasks, in EMNLP, 2020. T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum. paper code
  15. Uncertainty-aware self-training for few-shot text classification, in NeurIPS, 2020. S. Mukherjee, and A. Awadallah. paper code
  16. Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction, in NeurIPS, 2020:. J. Baek, D. B. Lee, and S. J. Hwang. paper code
  17. MetaNER: Named entity recognition with meta-learning, in TheWebConf, 2020. J. Li, S. Shang, and L. Shao. paper
  18. Conditionally adaptive multi-task learning: Improving transfer learning in NLP using fewer parameters & less data, in ICLR, 2021. J. Pilault, A. E. hattami, and C. Pal. paper code
  19. Revisiting few-sample BERT fine-tuning, in ICLR, 2021. T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and Y. Artzi. paper code
  20. Few-shot conversational dense retrieval, in SIGIR, 2021. S. Yu, Z. Liu, C. Xiong, T. Feng, and Z. Liu. paper code
  21. Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion, in SIGIR, 2021. G. Niu, Y. Li, C. Tang, R. Geng, J. Dai, Q. Liu, H. Wang, J. Sun, F. Huang, and L. Si. paper
  22. Few-shot language coordination by modeling theory of mind, in ICML, 2021. H. Zhu, G. Neubig, and Y. Bisk. paper code
  23. Graph-evolving meta-learning for low-resource medical dialogue generation, in AAAI, 2021. S. Lin, P. Zhou, X. Liang, J. Tang, R. Zhao, Z. Chen, and L. Lin. paper
  24. KEML: A knowledge-enriched meta-learning framework for lexical relation classification, in AAAI, 2021. C. Wang, M. Qiu, J. Huang, and X. He. paper
  25. Few-shot learning for multi-label intent detection, in AAAI, 2021. Y. Hou, Y. Lai, Y. Wu, W. Che, and T. Liu. paper code
  26. SALNet: Semi-supervised few-shot text classification with attention-based lexicon construction, in AAAI, 2021. J.-H. Lee, S.-K. Ko, and Y.-S. Han. paper
  27. Learning from my friends: Few-shot personalized conversation systems via social networks, in AAAI, 2021. Z. Tian, W. Bi, Z. Zhang, D. Lee, Y. Song, and N. L. Zhang. paper code
  28. Relative and absolute location embedding for few-shot node classification on graph, in AAAI, 2021. Z. Liu, Y. Fang, C. Liu, and S. C.H. Hoi. paper
  29. Few-shot question answering by pretraining span selection, in ACL-IJCNLP, 2021. O. Ram, Y. Kirstain, J. Berant, A. Globerson, and O. Levy. paper code
  30. A closer look at few-shot crosslingual transfer: The choice of shots matters, in ACL-IJCNLP, 2021. M. Zhao, Y. Zhu, E. Shareghi, I. Vulic, R. Reichart, A. Korhonen, and H. Schütze. paper code
  31. Learning from miscellaneous other-classwords for few-shot named entity recognition, in ACL-IJCNLP, 2021. M. Tong, S. Wang, B. Xu, Y. Cao, M. Liu, L. Hou, and J. Li. paper code
  32. Distinct label representations for few-shot text classification, in ACL-IJCNLP, 2021. S. Ohashi, J. Takayama, T. Kajiwara, and Y. Arase. paper code
  33. Entity concept-enhanced few-shot relation extraction, in ACL-IJCNLP, 2021. S. Yang, Y. Zhang, G. Niu, Q. Zhao, and S. Pu. paper code
  34. On training instance selection for few-shot neural text generation, in ACL-IJCNLP, 2021. E. Chang, X. Shen, H.-S. Yeh, and V. Demberg. paper code
  35. Unsupervised neural machine translation for low-resource domains via meta-learning, in ACL-IJCNLP, 2021. C. Park, Y. Tae, T. Kim, S. Yang, M. A. Khan, L. Park, and J. Choo. paper code
  36. Meta-learning with variational semantic memory for word sense disambiguation, in ACL-IJCNLP, 2021. Y. Du, N. Holla, X. Zhen, C. Snoek, and E. Shutova. paper code
  37. Multi-label few-shot learning for aspect category detection, in ACL-IJCNLP, 2021. M. Hu, S. Z. H. Guo, C. Xue, H. Gao, T. Gao, R. Cheng, and Z. Su. paper
  38. TextSETTR: Few-shot text style extraction and tunable targeted restyling, in ACL-IJCNLP, 2021. P. Rileya, N. Constantb, M. Guob, G. Kumarc, D. Uthusb, and Z. Parekh. paper
  39. Few-shot text ranking with meta adapted synthetic weak supervision, in ACL-IJCNLP, 2021. S. Sun, Y. Qian, Z. Liu, C. Xiong, K. Zhang, J. Bao, Z. Liu, and P. Bennett. paper code
  40. PROTAUGMENT: Intent detection meta-learning through unsupervised diverse paraphrasing, in ACL-IJCNLP, 2021. T. Dopierre, C. Gravier, and W. Logerais. paper code
  41. AUGNLG: Few-shot natural language generation using self-trained data augmentation, in ACL-IJCNLP, 2021. X. Xu, G. Wang, Y.-B. Kim, and S. Lee. paper code
  42. Meta self-training for few-shot neural sequence labeling, in KDD, 2021. Y. Wang, S. Mukherjee, H. Chu, Y. Tu, M. Wu, J. Gao, and A. H. Awadallah. paper code
  43. Knowledge-enhanced domain adaptation in few-shot relation classification, in KDD, 2021. J. Zhang, J. Zhu, Y. Yang, W. Shi, C. Zhang, and H. Wang. paper code
  44. Few-shot text classification with triplet networks, data augmentation, and curriculum learning, in NAACL-HLT, 2021. J. Wei, C. Huang, S. Vosoughi, Y. Cheng, and S. Xu. paper code
  45. Few-shot intent classification and slot filling with retrieved examples, in NAACL-HLT, 2021. D. Yu, L. He, Y. Zhang, X. Du, P. Pasupat, and Q. Li. paper
  46. Non-parametric few-shot learning for word sense disambiguation, in NAACL-HLT, 2021. H. Chen, M. Xia, and D. Chen. paper code
  47. Towards few-shot fact-checking via perplexity, in NAACL-HLT, 2021. N. Lee, Y. Bang, A. Madotto, and P. Fung. paper
  48. ConVEx: Data-efficient and few-shot slot labeling, in NAACL-HLT, 2021. M. Henderson, and I. Vulic. paper
  49. Few-shot text generation with natural language instructions, in EMNLP, 2021. T. Schick, and H. Schütze. paper
  50. Towards realistic few-shot relation extraction, in EMNLP, 2021. S. Brody, S. Wu, and A. Benton. paper code
  51. Few-shot emotion recognition in conversation with sequential prototypical networks, in EMNLP, 2021. G. Guibon, M. Labeau, H. Flamein, L. Lefeuvre, and C. Clavel. paper code
  52. Learning prototype representations across few-shot tasks for event detection, in EMNLP, 2021. V. Lai, F. Dernoncourt, and T. H. Nguyen. paper
  53. Exploring task difficulty for few-shot relation extraction, in EMNLP, 2021. J. Han, B. Cheng, and W. Lu. paper code
  54. Honey or poison? Solving the trigger curse in few-shot event detection via causal intervention, in EMNLP, 2021. J. Chen, H. Lin, X. Han, and L. Sun. paper code
  55. Nearest neighbour few-shot learning for cross-lingual classification, in EMNLP, 2021. M. S. Bari, B. Haider, and S. Mansour. paper
  56. Knowledge-aware meta-learning for low-resource text classification, in EMNLP, 2021. H. Yao, Y. Wu, M. Al-Shedivat, and E. P. Xing. paper code
  57. Few-shot named entity recognition: An empirical baseline study, in EMNLP, 2021. J. Huang, C. Li, K. Subudhi, D. Jose, S. Balakrishnan, W. Chen, B. Peng, J. Gao, and J. Han. paper
  58. MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision, in EMNLP, 2021. Z. Li, D. Zhang, T. Cao, Y. Wei, Y. Song, and B. Yin. paper
  59. Meta-LMTC: Meta-learning for large-scale multi-label text classification, in EMNLP, 2021. R. Wang, X. Su, S. Long, X. Dai, S. Huang, and J. Chen. paper
  60. Ontology-enhanced prompt-tuning for few-shot learning., in TheWebConf, 2022. H. Ye, N. Zhang, S. Deng, X. Chen, H. Chen, F. Xiong, X. Chen, and H. Chen. paper
  61. EICO: Improving few-shot text classification via explicit and implicit consistency regularization, in Findings of ACL, 2022. L. Zhao, and C. Yao. paper
  62. Dialogue summaries as dialogue states (DS2), template-guided summarization for few-shot dialogue state tracking, in Findings of ACL, 2022. J. Shin, H. Yu, H. Moon, A. Madotto, and J. Park. paper code
  63. A few-shot semantic parser for wizard-of-oz dialogues with the precise thingtalk representation, in Findings of ACL, 2022. G. Campagna, S. J. Semnani, R. Kearns, L. J. K. Sato, S. Xu, and M. S. Lam. paper
  64. Multi-stage prompting for knowledgeable dialogue generation, in Findings of ACL, 2022. Z. Liu, M. Patwary, R. Prenger, S. Prabhumoye, W. Ping, M. Shoeybi, and B. Catanzaro. paper code
  65. Few-shot named entity recognition with self-describing networks, in ACL, 2022. J. Chen, Q. Liu, H. Lin, X. Han, and L. Sun. paper code
  66. CLIP models are few-shot learners: Empirical studies on VQA and visual entailment, in ACL, 2022. H. Song, L. Dong, W. Zhang, T. Liu, and F. Wei. paper
  67. CONTaiNER: Few-shot named entity recognition via contrastive learning, in ACL, 2022. S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang. paper code
  68. Few-shot controllable style transfer for low-resource multilingual settings, in ACL, 2022. K. Krishna, D. Nathani, X. Garcia, B. Samanta, and P. Talukdar. paper
  69. Label semantic aware pre-training for few-shot text classification, in ACL, 2022. A. Mueller, J. Krone, S. Romeo, S. Mansour, E. Mansimov, Y. Zhang, and D. Roth. paper
  70. Inverse is better! Fast and accurate prompt for few-shot slot tagging, in Findings of ACL, 2022. Y. Hou, C. Chen, X. Luo, B. Li, and W. Che. paper
  71. Label semantics for few shot named entity recognition, in Findings of ACL, 2022. J. Ma, M. Ballesteros, S. Doss, R. Anubhai, S. Mallya, Y. Al-Onaizan, and D. Roth. paper
  72. Hierarchical recurrent aggregative generation for few-shot NLG, in Findings of ACL, 2022. G. Zhou, G. Lampouras, and I. Iacobacci. paper
  73. Towards few-shot entity recognition in document images: A label-aware sequence-to-sequence framework, in Findings of ACL, 2022. Z. Wang, and J. Shang. paper
  74. A good prompt is worth millions of parameters: Low-resource prompt-based learning for vision-language models, in ACL, 2022. W. Jin, Y. Cheng, Y. Shen, W. Chen, and X. Ren. paper code
  75. Generated knowledge prompting for commonsense reasoning, in ACL, 2022. J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, and H. Hajishirzi. paper code
  76. End-to-end modeling via information tree for one-shot natural language spatial video grounding, in ACL, 2022. M. Li, T. Wang, H. Zhang, S. Zhang, Z. Zhao, J. Miao, W. Zhang, W. Tan, J. Wang, P. Wang, S. Pu, and F. Wu. paper
  77. Leveraging task transferability to meta-learning for clinical section classification with limited data, in ACL, 2022. Z. Chen, J. Kim, R. Bhakta, and M. Y. Sir. paper
  78. Improving meta-learning for low-resource text classification and generation via memory imitation, in ACL, 2022. Y. Zhao, Z. Tian, H. Yao, Y. Zheng, D. Lee, Y. Song, J. Sun, and N. L. Zhang. paper
  79. A simple yet effective relation information guided approach for few-shot relation extraction, in Findings of ACL, 2022. Y. Liu, J. Hu, X. Wan, and T. Chang. paper code
  80. Decomposed meta-learning for few-shot named entity recognition, in Findings of ACL, 2022. T. Ma, H. Jiang, Q. Wu, T. Zhao, and C. Lin. paper code
  81. Meta-learning for fast cross-lingual adaptation in dependency parsing, in ACL, 2022. A. Langedijk, V. Dankers, P. Lippe, S. Bos, B. C. Guevara, H. Yannakoudakis, and E. Shutova. paper code
  82. Enhancing cross-lingual natural language inference by prompt-learning from cross-lingual templates, in ACL, 2022. K. Qi, H. Wan, J. Du, and H. Chen. paper code

Acoustic Signal Processing

  1. One-shot learning of generative speech concepts, in CogSci, 2014. B. Lake, C.-Y. Lee, J. Glass, and J. Tenenbaum. paper
  2. Machine speech chain with one-shot speaker adaptation, INTERSPEECH, 2018. A. Tjandra, S. Sakti, and S. Nakamura. paper
  3. Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion, INTERSPEECH, 2018. S. H. Mohammadi and T. Kim. paper
  4. Few-shot audio classification with attentional graph neural networks, INTERSPEECH, 2019. S. Zhang, Y. Qin, K. Sun, and Y. Lin. paper
  5. One-shot voice conversion with disentangled representations by leveraging phonetic posteriorgrams, INTERSPEECH, 2019. S. H. Mohammadi, and T. Kim. paper
  6. One-shot voice conversion with global speaker embeddings, INTERSPEECH, 2019. H. Lu, Z. Wu, D. Dai, R. Li, S. Kang, J. Jia, and H. Meng. paper
  7. One-shot voice conversion by separating speaker and content representations with instance normalization, INTERSPEECH, 2019. J.-C. Chou, and H.-Y. Lee. paper
  8. Audio2Head: Audio-driven one-shot talking-head generation with natural head motion, in IJCAI, 2021. S. Wang, L. Li, Y. Ding, C. Fan, and X. Yu. paper

Recommendation

  1. A meta-learning perspective on cold-start recommendations for items, in NeurIPS, 2017. M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. paper
  2. MeLU: Meta-learned user preference estimator for cold-start recommendation, in KDD, 2019. H. Lee, J. Im, S. Jang, H. Cho, and S. Chung. paper code
  3. Sequential scenario-specific meta learner for online recommendation, in KDD, 2019. Z. Du, X. Wang, H. Yang, J. Zhou, and J. Tang. paper code
  4. Few-shot learning for new user recommendation in location-based social networks, in TheWebConf, 2020. R. Li, X. Wu, X. Chen, and W. Wang. paper
  5. MAMO: Memory-augmented meta-optimization for cold-start recommendation, in KDD, 2020. M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu. paper code
  6. Meta-learning on heterogeneous information networks for cold-start recommendation, in KDD, 2020. Y. Lu, Y. Fang, and C. Shi. paper code
  7. MetaSelector: Meta-learning for recommendation with user-level adaptive model selection, in TheWebConf, 2020. M. Luo, F. Chen, P. Cheng, Z. Dong, X. He, J. Feng, and Z. Li. paper
  8. Fast adaptation for cold-start collaborative filtering with meta-learning, in ICDM, 2020. T. Wei, Z. Wu, R. Li, Z. Hu, F. Feng, X. H. Sun, and W. Wang. paper
  9. Preference-adaptive meta-learning for cold-start recommendation, in IJCAI, 2021. L. Wang, B. Jin, Z. Huang, H. Zhao, D. Lian, Q. Liu, and E. Chen. paper
  10. Meta-learning helps personalized product search., in TheWebConf, 2022. B. Wu, Z. Meng, Q. Zhang, and S. Liang. paper
  11. Alleviating cold-start problem in CTR prediction with a variational embedding learning framework., in TheWebConf, 2022. X. Xu, C. Yang, Q. Yu, Z. Fang, J. Wang, C. Fan, Y. He, C. Peng, Z. Lin, and J. Shao. paper
  12. PNMTA: A pretrained network modulation and task adaptation approach for user cold-start recommendation., in TheWebConf, 2022. H. Pang, F. Giunchiglia, X. Li, R. Guan, and X. Feng. paper

Others

  1. Low data drug discovery with one-shot learning, ACS Central Science, 2017. H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. paper
  2. SMASH: One-shot model architecture search through hypernetworks, in ICLR, 2018. A. Brock, T. Lim, J. Ritchie, and N. Weston. paper
  3. SPARC: Self-paced network representation for few-shot rare category characterization, in KDD, 2018. D. Zhou, J. He, H. Yang, and W. Fan. paper
  4. MetaPred: Meta-learning for clinical risk prediction with limited patient electronic health records, in KDD, 2019. X. S. Zhang, F. Tang, H. H. Dodge, J. Zhou, and F. Wang. paper code
  5. AffnityNet: Semi-supervised few-shot learning for disease type prediction, in AAAI, 2019. T. Ma, and A. Zhang. paper
  6. Learning from multiple cities: A meta-learning approach for spatial-temporal prediction, in TheWebConf, 2019. H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li. paper code
  7. Federated meta-learning for fraudulent credit card detection, in IJCAI, 2020. W. Zheng, L. Yan, C. Gou, and F. Wang. paper
  8. Differentially private meta-learning, in ICLR, 2020. J. Li, M. Khodak, S. Caldas, and A. Talwalkar. paper
  9. Towards fast adaptation of neural architectures with meta learning, in ICLR, 2020. D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao. paper
  10. Using optimal embeddings to learn new intents with few examples: An application in the insurance domain, in KDD, 2020:. S. Acharya, and G. Fung. paper
  11. Meta-learning for query conceptualization at web scale, in KDD, 2020. F. X. Han, D. Niu, H. Chen, W. Guo, S. Yan, and B. Long. paper
  12. Few-sample and adversarial representation learning for continual stream mining, in TheWebConf, 2020. Z. Wang, Y. Wang, Y. Lin, E. Delord, and L. Khan. paper
  13. Few-shot graph learning for molecular property prediction, in TheWebConf, 2021. Z. Guo, C. Zhang, W. Yu, J. Herr, O. Wiest, M. Jiang, and N. V. Chawla. paper code
  14. Taxonomy-aware learning for few-shot event detection, in TheWebConf, 2021. J. Zheng, F. Cai, W. Chen, W. Lei, and H. Chen. paper
  15. Learning from graph propagation via ordinal distillation for one-shot automated essay scoring, in TheWebConf, 2021. Z. Jiang, M. Liu, Y. Yin, H. Yu, Z. Cheng, and Q. Gu. paper
  16. Few-shot network anomaly detection via cross-network meta-learning, in TheWebConf, 2021. K. Ding, Q. Zhou, H. Tong, and H. Liu. paper
  17. Few-shot knowledge validation using rules, in TheWebConf, 2021. M. Loster, D. Mottin, P. Papotti, J. Ehmüller, B. Feldmann, and F. Naumann. paper
  18. Graph learning regularization and transfer learning for few-shot event detection, in SIGIR, 2021. V. D. Lai, M. V. Nguyen, T. H. Nguyen, and F. Dernoncourt. paper code
  19. Progressive network grafting for few-shot knowledge distillation, in AAAI, 2021. C. Shen, X. Wang, Y. Yin, J. Song, S. Luo, and M. Song. paper code
  20. Curriculum meta-learning for next POI recommendation, in KDD, 2021. Y. Chen, X. Wang, M. Fan, J. Huang, S. Yang, and W. Zhu. paper code
  21. MFNP: A meta-optimized model for few-shot next POI recommendation, in IJCAI, 2021. H. Sun, J. Xu, K. Zheng, P. Zhao, P. Chao, and X. Zhou. paper
  22. Physics-aware spatiotemporal modules with auxiliary tasks for meta-learning, in IJCAI, 2021. S. Seo, C. Meng, S. Rambhatla, and Y. Liu. paper
  23. Property-aware relation networks for few-shot molecular property prediction, in NeurIPS, 2021. Y. Wang, A. Abuduweili, Q. Yao, and D. Dou. paper code
  24. Few-shot data-driven algorithms for low rank approximation, in NeurIPS, 2021. P. Indyk, T. Wagner, and D. Woodruff. paper
  25. Non-Gaussian Gaussian processes for few-shot regression, in NeurIPS, 2021. M. Sendera, J. Tabor, A. Nowak, A. Bedychaj, M. Patacchiola, T. Trzcinski, P. Spurek, and M. Zieba. paper
  26. HELP: Hardware-adaptive efficient latency prediction for NAS via meta-learning, in NeurIPS, 2021. H. Lee, S. Lee, S. Chong, and S. J. Hwang. paper
  27. Learning to learn dense Gaussian processes for few-shot learning, in NeurIPS, 2021. Z. Wang, Z. Miao, X. Zhen, and Q. Qiu. paper
  28. A meta-learning based stress category detection framework on social media., in TheWebConf, 2022. X. Wang, L. Cao, H. Zhang, L. Feng, Y. Ding, and N. Li. paper

Theories

  1. Learning to learn around a common mean, in NeurIPS, 2018. G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. paper
  2. Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm, in ICLR, 2018. C. Finn and S. Levine. paper
  3. A theoretical analysis of the number of shots in few-shot learning, in ICLR, 2020. T. Cao, M. T. Law, and S. Fidler. paper
  4. Rapid learning or feature reuse? Towards understanding the effectiveness of MAML, in ICLR, 2020. A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. paper
  5. Robust meta-learning for mixed linear regression with small batches, in NeurIPS, 2020. W. Kong, R. Somani, S. Kakade, and S. Oh. paper
  6. One-shot distributed ridge regression in high dimensions, in ICML, 2020. Y. Sheng, and E. Dobriban. paper
  7. Bridging the gap between practice and PAC-Bayes theory in few-shot meta-learning, in NeurIPS, 2021. N. Ding, X. Chen, T. Levinboim, S. Goodman, and R. Soricut. paper
  8. Generalization bounds for meta-learning: An information-theoretic analysis, in NeurIPS, 2021. Q. CHEN, C. Shui, and M. Marchand. paper
  9. Generalization bounds for meta-learning via PAC-Bayes and uniform stability, in NeurIPS, 2021. A. Farid, and A. Majumdar. paper
  10. Unraveling model-agnostic meta-learning via the adaptation learning rate, in ICLR, 2022. Y. Zou, F. Liu, and Q. Li. paper
  11. On the importance of firth bias reduction in few-shot classification, in ICLR, 2022. S. Ghaffari, E. Saleh, D. Forsyth, and Y. Wang. paper code
  12. Global convergence of MAML and theory-inspired neural architecture search for few-shot learning, in CVPR, 2022. H. Wang, Y. Wang, R. Sun, and B. Li. paper

Few-shot Learning and Zero-shot Learning

  1. Label-embedding for attribute-based classification, in CVPR, 2013. Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. paper
  2. A unified semantic embedding: Relating taxonomies and attributes, in NeurIPS, 2014. S. J. Hwang and L. Sigal. paper
  3. Multi-attention network for one shot learning, in CVPR, 2017. P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, and H. T. Shen. paper
  4. Few-shot and zero-shot multi-label learning for structured label spaces, in EMNLP, 2018. A. Rios and R. Kavuluru. paper
  5. Learning compositional representations for few-shot recognition, in ICCV, 2019. P. Tokmakov, Y.-X. Wang, and M. Hebert. paper code
  6. Large-scale few-shot learning: Knowledge transfer with class hierarchy, in CVPR, 2019. A. Li, T. Luo, Z. Lu, T. Xiang, and L. Wang. paper
  7. Generalized zero- and few-shot learning via aligned variational autoencoders, in CVPR, 2019. E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata. paper code
  8. F-VAEGAN-D2: A feature generating framework for any-shot learning, in CVPR, 2019. Y. Xian, S. Sharma, B. Schiele, and Z. Akata. paper
  9. TGG: Transferable graph generation for zero-shot and few-shot learning, in ACM MM, 2019. C. Zhang, X. Lyu, and Z. Tang. paper
  10. Adaptive cross-modal few-shot learning, in NeurIPS, 2019. C. Xing, N. Rostamzadeh, B. N. Oreshkin, and P. O. Pinheiro. paper
  11. Learning meta model for zero- and few-shot face anti-spoofing, in AAAI, 2020. Y. Qin, C. Zhao, X. Zhu, Z. Wang, Z. Yu, T. Fu, F. Zhou, J. Shi, and Z. Lei. paper
  12. RD-GAN: Few/Zero-shot chinese character style transfer via radical decomposition and rendering, in ECCV, 2020. Y. Huang, M. He, L. Jin, and Y. Wang. paper
  13. An empirical study on large-scale multi-label text classification including few and zero-shot labels, in EMNLP, 2020. I. Chalkidis, M. Fergadiotis, S. Kotitsas, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. paper
  14. Multi-label few/zero-shot learning with knowledge aggregated from multiple label graphs, in EMNLP, 2020. J. Lu, L. Du, M. Liu, and J. Dipnall. paper
  15. Emergent complexity and zero-shot transfer via unsupervised environment design, in NeurIPS, 2020. M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. paper
  16. Learning graphs for knowledge transfer with limited labels, in CVPR, 2021. P. Ghosh, N. Saini, L. S. Davis, and A. Shrivastava. paper
  17. Improving zero and few-shot abstractive summarization with intermediate fine-tuning and data augmentation, in NAACL-HLT, 2021. A. R. Fabbri, S. Han, H. Li, H. Li, M. Ghazvininejad, S. R. Joty, D. R. Radev, and Y. Mehdad. paper
  18. Label verbalization and entailment for effective zero and few-shot relation extraction, in EMNLP, 2021. O. Sainz, O. L. d. Lacalle, G. Labaka, A. Barrena, and E. Agirre. paper code
  19. An empirical investigation of word alignment supervision for zero-shot multilingual neural machine translation, in EMNLP, 2021. A. Raganato, R. Vázquez, M. Creutz, and J. Tiedemann. paper
  20. Bridge to target domain by prototypical contrastive learning and label confusion: Re-explore zero-shot learning for slot filling, in EMNLP, 2021. L. Wang, X. Li, J. Liu, K. He, Y. Yan, and W. Xu. paper code
  21. A label-aware BERT attention network for zero-shot multi-intent detection in spoken language understanding, in EMNLP, 2021. T. Wu, R. Su, and B. Juang. paper
  22. Zero-shot dialogue disentanglement by self-supervised entangled response selection, in EMNLP, 2021. T. Chi, and A. I. Rudnicky. paper code
  23. Robust retrieval augmented generation for zero-shot slot filling, in EMNLP, 2021. M. R. Glass, G. Rossiello, M. F. M. Chowdhury, and A. Gliozzo. paper code
  24. Everything is all it takes: A multipronged strategy for zero-shot cross-lingual information extraction, in EMNLP, 2021. M. Yarmohammadi, S. Wu, M. Marone, H. Xu, S. Ebner, G. Qin, Y. Chen, J. Guo, C. Harman, K. Murray, A. S. White, M. Dredze, and B. V. Durme. paper code
  25. An empirical study on multiple information sources for zero-shot fine-grained entity typing, in EMNLP, 2021. Y. Chen, H. Jiang, L. Liu, S. Shi, C. Fan, M. Yang, and R. Xu. paper
  26. Zero-shot dialogue state tracking via cross-task transfer, in EMNLP, 2021. Z. Lin, B. Liu, A. Madotto, S. Moon, Z. Zhou, P. Crook, Z. Wang, Z. Yu, E. Cho, R. Subba, and P. Fung. paper code
  27. Finetuned language models are zero-shot learners, in ICLR, 2022. J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le. paper code
  28. Zero-shot stance detection via contrastive learning., in TheWebConf, 2022. B. Liang, Z. Chen, L. Gui, Y. He, M. Yang, and R. Xu. paper code
  29. Reframing instructional prompts to GPTk’s language, in Findings of ACL, 2022. D. Khashabi, C. Baral, Y. Choi, and H. Hajishirzi. paper
  30. JointCL: A joint contrastive learning framework for zero-shot stance detection, in ACL, 2022. B. Liang, Q. Zhu, X. Li, M. Yang, L. Gui, Y. He, and R. Xu. paper code
  31. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification, in ACL, 2022. S. Hu, N. Ding, H. Wang, Z. Liu, J. Wang, J. Li, W. Wu, and M. Sun. paper code
  32. Uni-Perceiver: Pre-training unified architecture for generic perception for zero-shot and few-shot tasks, in CVPR, 2022. X. Zhu, J. Zhu, H. Li, X. Wu, H. Li, X. Wang, and J. Dai. paper

Variants of Few-shot Learning

  1. Continuous adaptation via meta-learning in nonstationary and competitive environments, in ICLR, 2018. M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. paper
  2. Deep online learning via meta-learning: Continual adaptation for model-based RL, in ICLR, 2018. A. Nagabandi, C. Finn, and S. Levine. paper
  3. Incremental few-shot learning with attention attractor networks, in NeurIPS, 2019. M. Ren, R. Liao, E. Fetaya, and R. S. Zemel. paper code
  4. Bidirectional one-shot unsupervised domain mapping, in ICCV, 2019. T. Cohen, and L. Wolf. paper
  5. XtarNet: Learning to extract task-adaptive representation for incremental few-shot learning, in ICML, 2020. S. W. Yoon, D. Kim, J. Seo, and J. Moon. paper code
  6. Few-shot class-incremental learning, in CVPR, 2020. X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong. paper
  7. Wandering within a world: Online contextualized few-shot learning, in ICLR, 2021. M. Ren, M. L. Iuzzolino, M. C. Mozer, and R. Zemel. paper
  8. Repurposing pretrained models for robust out-of-domain few-shot learning, in ICLR, 2021. N. Kwon, H. Na, G. Huang, and S. Lacoste-Julien. paper code
  9. Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation, in CVPR, 2021. X. Yue, Z. Zheng, S. Zhang, Y. Gao, T. Darrell, K. Keutzer, and A. S. Vincentelli. paper
  10. Self-promoted prototype refinement for few-shot class-incremental learning, in CVPR, 2021. K. Zhu, Y. Cao, W. Zhai, J. Cheng, and Z. Zha. paper
  11. Semantic-aware knowledge distillation for few-shot class-incremental learning, in CVPR, 2021. A. Cheraghian, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and M. Harandi. paper
  12. Few-shot incremental learning with continually evolved classifiers, in CVPR, 2021. C. Zhang, N. Song, G. Lin, Y. Zheng, P. Pan, and Y. Xu. paper
  13. Learning a universal template for few-shot dataset generalization, in ICML, 2021. E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin. paper
  14. GP-Tree: A gaussian process classifier for few-shot incremental learning, in ICML, 2021. I. Achituve, A. Navon, Y. Yemini, G. Chechik, and E. Fetaya. paper code
  15. Addressing catastrophic forgetting in few-shot problems, in ICML, 2021. P. Yap, H. Ritter, and D. Barber. paper code
  16. Few-shot conformal prediction with auxiliary tasks, in ICML, 2021. A. Fisch, T. Schuster, T. Jaakkola, and R. Barzilay. paper code
  17. Few-shot lifelong learning, in AAAI, 2021. P. Mazumder, P. Singh, and P. Rai. paper
  18. Few-shot class-incremental learning via relation knowledge distillation, in AAAI, 2021. S. Dong, X. Hong, X. Tao, X. Chang, X. Wei, and Y. Gong. paper
  19. Few-shot one-class classification via meta-learning, in AAAI, 2021. A. Frikha, D. Krompass, H. Koepken, and V. Tresp. paper code
  20. Practical one-shot federated learning for cross-silo setting, in IJCAI, 2021. Q. Li, B. He, and D. Song. paper code
  21. Incremental few-shot text classification with multi-round new classes: Formulation, dataset and system, in NAACL-HLT, 2021. C. Xia, W. Yin, Y. Feng, and P. S. Yu. paper
  22. Continual few-shot learning for text classification, in EMNLP, 2021. R. Pasunuru, V. Stoyanov, and M. Bansal. paper code
  23. Self-training with few-shot rationalization, in EMNLP, 2021. M. M. Bhat, A. Sordoni, and S. Mukherjee. paper
  24. Diverse distributions of self-supervised tasks for meta-learning in NLP, in EMNLP, 2021. T. Bansal, K. P. Gunasekaran, T. Wang, T. Munkhdalai, and A. McCallum. paper
  25. Generalized and incremental few-shot learning by explicit learning and calibration without forgetting, in ICCV, 2021. A. Kukleva, H. Kuehne, and B. Schiele. paper
  26. Meta learning on a sequence of imbalanced domains with difficulty awareness, in ICCV, 2021. Z. Wang, T. Duan, L. Fang, Q. Suo, and M. Gao. paper code
  27. Synthesized feature based few-shot class-incremental learning on a mixture of subspaces, in ICCV, 2021. A. Cheraghian, S. Rahman, S. Ramasinghe, P. Fang, C. Simon, L. Petersson, and M. Harandi. paper
  28. Few-shot and continual learning with attentive independent mechanisms, in ICCV, 2021. E. Lee, C. Huang, and C. Lee. paper code
  29. Low-shot validation: Active importance sampling for estimating classifier performance on rare categories, in ICCV, 2021. F. Poms, V. Sarukkai, R. T. Mullapudi, N. S. Sohoni, W. R. Mark, D. Ramanan, and K. Fatahalian. paper
  30. Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima, in NeurIPS, 2021. G. SHI, J. CHEN, W. Zhang, L. Zhan, and X. Wu. paper
  31. Variational continual Bayesian meta-learning, in NeurIPS, 2021. Q. Zhang, J. Fang, Z. Meng, S. Liang, and E. Yilmaz. paper
  32. LFPT5: A unified framework for lifelong few-shot language learning based on prompt tuning of T5, in ICLR, 2022. C. Qin, and S. Joty. paper code
  33. Subspace regularizers for few-shot class incremental learning, in ICLR, 2022. A. F. Akyürek, E. Akyürek, D. Wijaya, and J. Andreas. paper code
  34. Meta discovery: Learning to discover novel classes given very limited data, in ICLR, 2022. H. Chi, F. Liu, W. Yang, L. Lan, T. Liu, B. Han, G. Niu, M. Zhou, and M. Sugiyama. paper
  35. Topological transduction for hybrid few-shot learning., in TheWebConf, 2022. J. Chen, and A. Zhang. paper
  36. Continual few-shot relation learning via embedding space regularization and data augmentation, in ACL, 2022. C. Qin, and S. Joty. paper code
  37. Few-shot class-incremental learning for named entity recognition, in ACL, 2022. R. Wang, T. Yu, H. Zhao, S. Kim, S. Mitra, R. Zhang, and R. Henao. paper
  38. Task-adaptive negative envision for few-shot open-set recognition, in CVPR, 2022. S. Huang, J. Ma, G. Han, and S. Chang. paper code
  39. Forward compatible few-shot class-incremental learning, in CVPR, 2022. D. Zhou, F. Wang, H. Ye, L. Ma, S. Pu, and D. Zhan. paper code
  40. Sylph: A hypernetwork framework for incremental few-shot object detection, in CVPR, 2022. L. Yin, J. M. Perez-Rua, and K. J. Liang. paper
  41. Constrained few-shot class-incremental learning, in CVPR, 2022. M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi. paper
  42. iFS-RCNN: An incremental few-shot instance segmenter, in CVPR, 2022. K. Nguyen, and S. Todorovic. paper
  43. MetaFSCIL: A meta-learning approach for few-shot class incremental learning, in CVPR, 2022. Z. Chi, L. Gu, H. Liu, Y. Wang, Y. Yu, and J. Tang. paper
  44. Few-shot incremental learning for label-to-image translation, in CVPR, 2022. P. Chen, Y. Zhang, Z. Li, and L. Sun. paper
  45. Revisiting learnable affines for batch norm in few-shot transfer learning, in CVPR, 2022. M. Yazdanpanah, A. A. Rahman, M. Chaudhary, C. Desrosiers, M. Havaei, E. Belilovsky, and S. E. Kahou. paper
  46. Few-shot learning with noisy labels, in CVPR, 2022. K. J. Liang, S. B. Rangrej, V. Petrovic, and T. Hassner. paper
  47. Improving adversarially robust few-shot image classification with generalizable representations, in CVPR, 2022. J. Dong, Y. Wang, J. Lai, and X. Xie. paper

Datasets/Benchmarks

  1. FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation, in EMNLP, 2018. X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. paper code
  2. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learning, arXiv preprint, 2019. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. paper code
  3. The Omniglot challenge: A 3-year progress report, in Current Opinion in Behavioral Sciences, 2019. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper code
  4. FewRel 2.0: Towards more challenging few-shot relation classification, in EMNLP-IJCNLP, 2019. T. Gao, X. Han, H. Zhu, Z. Liu, P. Li, M. Sun, and J. Zhou. paper code
  5. META-DATASET: A dataset of datasets for learning to learn from few examples, in ICLR, 2020. E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu, R. Goroshin, C. Gelada, K. Swersky, P. Manzagol, and H. Larochelle. paper code
  6. Few-shot object detection with attention-rpn and multi-relation detector, in CVPR, 2020. Q. Fan, W. Zhuo, C.-K. Tang, Y.-W. Tai. paper code
  7. FSS-1000: A 1000-class dataset for few-shot segmentation, in CVPR, 2020. X. Li, T. Wei, Y. P. Chen, Y.-W. Tai, and C.-K. Tang. paper code
  8. Impact of base dataset design on few-shot image classification, in ECCV, 2020. O. Sbai, C. Couprie, and M. Aubry. paper code
  9. A large-scale benchmark for few-shot program induction and synthesis, in ICML, 2021. F. Alet, J. Lopez-Contreras, J. Koppel, M. Nye, A. Solar-Lezama, T. Lozano-Perez, L. Kaelbling, and J. Tenenbaum. paper code
  10. FEW-NERD: A few-shot named entity recognition dataset, in ACL-IJCNLP, 2021. N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H. Zheng, and Z. Liu. paper code
  11. CrossFit: A few-shot learning challenge for cross-task generalization in NLP, in EMNLP, 2021. Q. Ye, B. Y. Lin, and X. Ren. paper code
  12. ORBIT: A real-world few-shot dataset for teachable object recognition, in ICCV, 2021. D. Massiceti, L. Zintgraf, J. Bronskill, L. Theodorou, M. T. Harris, E. Cutrell, C. Morrison, K. Hofmann, and S. Stumpf. paper code
  13. FLEX: Unifying evaluation for few-shot NLP, in NeurIPS, 2021. J. Bragg, A. Cohan, K. Lo, and I. Beltagy. paper
  14. Two sides of meta-learning evaluation: In vs. out of distribution, in NeurIPS, 2021. A. Setlur, O. Li, and V. Smith. paper
  15. Realistic evaluation of transductive few-shot learning, in NeurIPS, 2021. O. Veilleux, M. Boudiaf, P. Piantanida, and I. B. Ayed. paper
  16. FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding, in ACL, 2022. Y. Zheng, J. Zhou, Y. Qian, M. Ding, C. Liao, L. Jian, R. Salakhutdinov, J. Tang, S. Ruder, and Z. Yang. paper code
  17. Bongard-HOI: Benchmarking few-shot visual reasoning for human-object interactions, in CVPR, 2022. H. Jiang, X. Ma, W. Nie, Z. Yu, Y. Zhu, and A. Anandkumar. paper code

Software Library

  1. PaddleFSL, a library for few-shot learning written in PaddlePaddlelink
  2. Torchmeta, a library for few-shot learning & meta-learning written in PyTorchlink
  3. learn2learn, a library for meta-learning written in PyTorchlink
  4. keras-fsl, a library for few-shot learning written in Tensorflowlink

YOLOv7-Pose 基于YOLOv7的关键点模型

目前人体姿态估计总体分为Top-down和Bottom-up两种,与目标检测不同,无论是基于热力图或是基于检测器处理的关键点检测算法,都较为依赖计算资源,推理耗时略长,今年出现了以YOLO为基线的关键点检测器。玩过目标检测的童鞋都知道YOLO以及各种变种目前算是工业落地较多的一类检测器,其简单的设计思想,长期活跃的社区生态,使其始终占据着较高的话题度。

【演变】

在ECCV 2022和CVPRW 2022会议上,YoLo-Pose和KaPao(下称为yolo-like-pose)都基于流行的YOLO目标检测框架提出一种新颖的无热力图的方法,类似于很久以前谷歌使用回归计算关键点的思想,yolo-like-pose一不使用检测器进行二阶处理,二部使用热力图拼接,虽然是一种暴力回归关键点的检测算法,但在处理速度上具有一定优势。

kapao

去年11月,滑铁卢大学率先提出了 KaPao:Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation,基于YOLOv5进行关键点检测,该文章目前已被ECCV 2022接收,该算法所取得的性能如下:

paper:https://arxiv.org/abs/2111.08557

code:https://github.com/wmcnally/kapao

yolov5-pose

今年4月,yolo-pose也挂在了arvix,在论文中,通过调研发现 HeatMap 的方式普遍使用L1 Loss。然而,L1损失并不一定适合获得最佳的OKS。且由于HeatMap是概率图,因此在基于纯HeatMap的方法中不可能使用OKS作为loss,只有当回归到关键点位置时,OKS才能被用作损失函数。因此,yolo-pose使用oks loss作为关键点的损失

相关代码在https://github.com/TexasInstruments/edgeai-yolov5/blob/yolo-pose/utils/loss.py也可见到:

 if self.kpt_label:
                    #Direct kpt prediction
                    pkpt_x = ps[:, 6::3] * 2. – 0.5
                    pkpt_y = ps[:, 7::3] * 2. – 0.5
                    pkpt_score = ps[:, 8::3]
                    #mask
                    kpt_mask = (tkpt[i][:, 0::2] != 0)
                    lkptv += self.BCEcls(pkpt_score, kpt_mask.float()) 
                    #l2 distance based loss
                    #lkpt += (((pkpt-tkpt[i])*kpt_mask)**2).mean()  #Try to make this loss based on distance instead of ordinary difference
                    #oks based loss
                    d = (pkpt_x-tkpt[i][:,0::2])**2 + (pkpt_y-tkpt[i][:,1::2])**2
                    s = torch.prod(tbox[i][:,-2:], dim=1, keepdim=True)
                    kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0))/torch.sum(kpt_mask != 0)
                    lkpt += kpt_loss_factor*((1 – torch.exp(-d/(s*(4*sigmas**2)+1e-9)))*kpt_mask).mean()

yolov7-pose

上个星期,YOLOv7的作者也放出了关于人体关键点检测的模型,该模型基于YOLOv7-w6

目前作者提供了.pt文件和推理测试的脚本,有兴趣的童靴可以去看看,本文的重点更偏向于对yolov7-pose.pt进行onnx文件的抽取和推理。

【yolov7-pose + onnxruntime】

首先下载好官方的预训练模型,使用提供的脚本进行推理:

% weigths = torch.load('weights/yolov7-w6-pose.pt')
% image = cv2.imread('sample/pose.jpeg')
!python pose.py 

一、yolov7-w6 VS yolov7-w6-pose

首先看下yolov7-w6使用的检测头

二、修改export脚本

如果直接使用export脚本进行onnx的抽取一定报错,在上一节我们已经看到pose.pt模型使用的检测头为IKeypoint,那么脚本需要进行相应更改:在export.py的这个位置插入:

 # 原代码:
    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
        if isinstance(m, models.common.Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.Hardswish):
                m.act = Hardswish()
            elif isinstance(m.act, nn.SiLU):
                m.act = SiLU()
     model.model[-1].export = not opt.grid  # set Detect() layer grid export
                
    # 修改代码:
    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
        if isinstance(m, models.common.Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.Hardswish):
                m.act = Hardswish()
            elif isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        elif isinstance(m, models.yolo.IKeypoint):
            m.forward = m.forward_keypoint  # assign forward (optional)
            # 此处切换检测头
    model.model[-1].export = not opt.grid  # set Detect() layer grid export

forward_keypoint在原始的yolov7 repo源码中有,作者已经封装好,但估计是还没打算开放使用。

使用以下命令进行抽取:python export.py –weights ‘weights/yolov7-w6-pose.pt’ –img-size 960 –simplify True

三、onnxruntime推理

onnxruntime推理代码:

import onnxruntime
import matplotlib.pyplot as plt
import torch
import cv2
from torchvision import transforms
import numpy as np
from utils.datasets import letterbox
from utils.general import non_max_suppression_kpt
from utils.plots import output_to_keypoint, plot_skeleton_kpts

device = torch.device("cpu")

image = cv2.imread('sample/pose.jpeg')
image = letterbox(image, 960, stride=64, auto=True)[0]
image_ = image.copy()
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()]))

print(image.shape)
sess = onnxruntime.InferenceSession('weights/yolov7-w6-pose.onnx')
out = sess.run(['output'], {'images': image.numpy()})[0]
out = torch.from_numpy(out)

output = non_max_suppression_kpt(out, 0.25, 0.65, nc=1, nkpt=17, kpt_label=True)
output = output_to_keypoint(output)
nimg = image[0].permute(1, 2, 0) * 255
nimg = nimg.cpu().numpy().astype(np.uint8)
nimg = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR)
for idx in range(output.shape[0]):
    plot_skeleton_kpts(nimg, output[idx, 7:].T, 3)

# matplotlib inline
plt.figure(figsize=(8, 8))
plt.axis('off')
plt.imshow(nimg)
plt.show()
plt.savefig("tmp")

推理效果几乎无损,但耗时会缩短一倍左右,另外有几个点:

  • image = letterbox(image, 960, stride=64, auto=True)[0] 中stride指的是最大步长,yolov7-w6和yolov5s下采样多了一步,导致在8,16,32的基础上多了64的下采样步长
  • output = non_max_suppression_kpt(out, 0.25, 0.65, nc=1, nkpt=17, kpt_label=True) ,nc 和 kpt_label 等信息在netron打印模型文件时可以看到
  • 所得到的onnx相比原半精度模型大了将近三倍,后续排查原因
  • yolov7-w6-pose极度吃显存,推理一张960×960的图像,需要2-4G的显存,训练更难以想象

ParseNet: Looking Wider to See Better

论文地址: https://arxiv.org/abs/1506.04579

代码: https://github.com/weiliu89/caffe

U形的编解码结构奠定了深度学习语义分割的基础,随着基线模型的表现越来越好,深度学习语义分割关注的焦点开始由原先的编解码架构下上采样如何更好的恢复图像像素转变为如何更加有效的利用图像上下文信息和提取多尺度特征。因而催生出语义分割的第二个主流的结构设计:多尺度结构。接下来的几篇论文解读将对重在关注图像上下文信息和多尺度特征的结构设计网络进行梳理,包括ParseNet、PSPNet、以空洞卷积为核心的Deeplab系列、HRNet以及其他代表性的多尺度设计。

自从全卷积网络(Fully Convolutional Networks, FCN)和UNet提出以来,主流的改进思路是围绕着编解码结构来进行的。但又一些改进在当时看来却不是那么“主流”,其中有一些是针对如何提升网络的全局信息提取能力来进行改进的。FCN提出之后,一些学者认为FCN忽略了图像作为整张图的全局信息,因而在一些应用场景下不能有效利用图像的语义上下文信息。图像全局信息除了增加对图像的整体理解之外,还有助于模型对局部图像块的判断,此前一种主流的方法是将概率图模型融入到CNN训练中,用于捕捉图像像素的上下文信息,比如说给模型加条件随机场(Conditional Random Field,CRF),但这种方式会使得模型难以训练并且变得低效。

针对如何高效利用图像的全局信息问题,相关研究在FCN结构的基础上提出了ParseNet,一种高效的端到端的语义分割网络,旨在利用全局信息来指导局部信息判断,并且引入太多的额外计算开销。提出ParseNet的论文为ParseNet: Looking Wider to See Better,发表于2015年,是在FCN基础上基于上下文视角的一个改进设计。在语义分割中,上下文信息对于提升模型表现非常关键,在仅有局部信息情况下,像素的分类判断有时候会变得模棱两可。尽管理论上深层卷积层的会有非常大的感受野,但在实际中有效感受野却小很多,不足以捕捉图像的全局信息。ParseNet通过全局平均池化的方法在FCN基础上直接获取上下文信息,图1为ParseNet的上下文提取模块,具体地,使用全局平均池化对上下文特征图进行池化后得到全局特征,然后对全局特征进行L2规范化处理,再对规范化后的特征图反池化后与局部特征图进行融合,这样的一个简单结构对于语义分割质量的提升的巨大的。如图2所示,ParseNet能够关注到图像中的全局信息,保证图像分割的完整性。

关于全局特征与局部特征的融合,ParseNet给出两种融合方式:早期融合(early fusion)和晚期融合(late fusion)。早期融合就是图6-1中所展现的融合方式,对全局特征反池化后直接与局部特征进行融合,然后在进行像素分类。而晚期融合则是把全局特征和局部特征分别进行像素分类后再进行某种融合,比如说进行加权。但无论是早期融合还是晚期融合,如果选取的归一化方式合适,其效果是差不多的。

下图是ParseNet在VOC 2012数据集上的分割效果,可以看到,ParseNet的分割能够明显关注到图像全局信息。

补充:反卷积(Deconvolution)、上采样(UNSampling)与上池化(UnPooling)

图(a)表示UnPooling的过程,特点是在Maxpooling的时候保留最大值的位置信息,之后在unPooling阶段使用该信息扩充Feature Map,除最大值位置以外,其余补0。

与之相对的是图(b),两者的区别在于UnSampling阶段没有使用MaxPooling时的位置信息,而是直接将内容复制来扩充Feature Map。从图中即可看到两者结果的不同。

图(c)为反卷积的过程,反卷积是卷积的逆过程,又称作转置卷积。最大的区别在于反卷积过程是有参数要进行学习的(类似卷积过程),理论是反卷积可以实现UnPooling和unSampling,只要卷积核的参数设置的合理。

2、FCN 全卷积网络 Fully Convolutional Networks

FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

简单的来说,FCN与CNN的区别在把于CNN最后的全连接层换成卷积层,输出的是一张已经Label好的图片。

论文写作全攻略|一篇学术科研论文该怎么写

摘自: 深度学习与计算机视觉

论文通俗来说是本科和硕士的升学助力,也是学术界的硬通货,更是未来工作的加分项和敲门砖。

论文的写作对很多学生来说,是一种挑战。有些学生不知该如何对论文做选题,更多的学生则是对毕业论文写作到底有什么要求不清楚,不知从何下手,常常为毕业论文发愁。

论文写作的分为四个顺序:阅读论文→确定创新点→Coding/实验→论文写作。

1、阅读论文

发表论文的前提是大量阅读论文!!!文献阅读分为三个阶段,初期找方向,中期重点突破,后期广泛涉猎。

初期读论文需要逐字精读,方向不必严格限定,感兴趣论文涉及的论文链都可以去读。一篇论文用时一天,英文论文+中文分享,前期阅读论文数量30篇以上,可以提高学术英语阅读能力和专业术语积累。

中期读论文要重点精读,严格限定研究方向和方向涉及的论文链。重点论文时间控制在半天,泛泛论文是一小时,重点论文重复读+源码学习,论文阅读数最好为10篇以上。了解学习技术演进、学习方法创新和整理创新方法链。

后期少数精读+大量泛读,不限定方向,自己重点方向+涉猎方向。

重点论文两小时,泛泛论文半小时,跟随研究方向的最新发展,了解其他方向的大致进展,思考创新点引进嫁接。

2、确定创新点

可以从以下四个方面确定自己论文的创新点:

1. 数据集的改动:噪声、几何变换、遮挡、光照条件、场景依赖

2. 模型的问题:模型体积、推理速度、收敛困难、非端到端、后处理优化

3. 结构替换:transformer、FCN、AE、

4. 特定场景的应用:通用模型考虑泛化能力特定应用考虑专用性。比如夜间检测、水下检测、鱼眼相机检测。

另外就是要记住A+B+C/2.5法则

A:本研究方向的继承性创新点(自然演进)

B:其他方向的既有方法(嫁接到其他任务)

C:细节上的创新(数据增强/数据集/损失函数设计)

例如下面这篇CVPR2021: CutPaste,运用的就是A+B+C/2.5法则。

A:自然演进  cutout—cutpaste+B:既有方法  将自监督学习的pretask应用于异常检测+C:细节创新   高斯概率密度估计(GDE)判断异常

3、Coding/实验

原则:1篇论文代码复现(至少读懂代码实现)>>跑通多个项目demo

1. 找到baseline论文的代码;

2. 在baseline代码上实现期望功能的最小化实现;

3. 逐步实现最终的功能代码,同时做实现验证各部分设计的效果。

4、 论文写作

01:写作策略:

选择2篇左右的范文,去分析论文结构(Introduction)、重点词句(Related Work)、语言风格(Method)、实验设计(Experiment)、绘图风格(Conclusion)和故事设计(References)。

02:论文写作技巧

(1)论文写作技巧——注意标题

  • 用⼀句话概括你所做的工作
  • 考虑搜索引擎的影响,包含关键词
  • 可以新颖一些

(2)论文写作技巧——首页加图

(3)论文写作技巧—Introduction直接列贡献

  • 不用介绍各个部分如何组织的;
  • 直接说做出了哪些贡献;
  • 标明贡献位置。

Yolov7之正负样本分配策略

以下文章来源于微信公众号: 所向披靡的张大刀

作者:张大刀

原文链接:https://mp.weixin.qq.com/s/nhZ3Q1NHm3op8abdVIGmLA

本文仅用于学术分享,如有侵权,请联系后台作删文处理

导读在正负样本分配中,Yolov7的策略算是Yolov5和YoloX的结合。本文先从Yolov5和Yolov6正负样本分配策略分析入手,后引入到Yolov7的解析中,希望对大家学习Yolov7有帮助。

本文主要就Yolov7的正负样本筛选策略,并与Yolov5,Yolov6进行比对。

首先接着上一篇Yolov7系列一,网络整体结构,填几个小坑,希望对大家没有造成困扰:

如:E-ELAN层,在cat后需要要conv层做特征融合:

还有SPPCSPC层经大家勘误后,改动如下:

还有另外几个小问题:如REPconv层在Yolov7论文中将identity 层去掉,卷积后的激活函数是SiLu这些,因Yolov7网络是基于Tag0.1版本Yolov7.yaml的代码构造的,作者后续在持续优化迭代,后续大刀也会继续更新。

Yolov7因为基于anchor based的目标检测,与Yolov5相同,Yolov6的正负样本的匹配策略则与Yolox相同,Yolov7则基本集成两家之所长。下面先回顾下Yolov5,v6的正负样本匹配策略。

1. Yolov5的正负样本匹配策略

Yolov5基于anchor based,在开始训练前,会基于训练集中gt(ground truth  框),通过k-means聚类算法,先验获得9个从小到大排列的anchor框。先将每个gt与9个anchor匹配(以前是IOU匹配,Yolov5中变成shape匹配,计算gt与9个anchor的长宽比,如果长宽比小于设定阈值,说明该gt和对应的anchor匹配),

如上图为Yolov5的网络架构,Yolov5有三层网络,9个anchor, 从小到大,每3个anchor对应一层prediction网络,gt与之对应anchor所在的层,用于对该gt做训练预测,一个gt可能与几个anchor均能匹配上。所以一个gt可能在不同的网络层上做预测训练,大大增加了正样本的数量,当然也会出现gt与所有anchor都匹配不上的情况,这样gt就会被当成背景,不参与训练,说明anchor框尺寸设计的不好。

在训练过程中怎么定义正负样本呢,因为Yolov5中负样本不参与训练,所以要增加正样本的数量。gt框与anchor框匹配后,得到anchor框对应的网络层的grid,看gt中心点落在哪个grid上,不仅取该grid中和gt匹配的anchor作为正样本,还取相邻的的两个grid中的anchor为正样本。如下图所示,绿色的gt框中心点落在红色grid的第三象限里,那不仅取该grid,还要取左边的grid和下面的grid,这样基于三个grid和匹配的anchor就有三个中心点位于三个grid中心点,长宽为anchor长宽的正样本,同时gt不仅与一个anchor框匹配,如果跟几个anchor框都匹配上,所以可能有3-27个正样本,增大正样本数量。

2. Yolov6的正负样本匹配策略

Yolov6的正负样本匹配策略同Yolox,Yolox因为是anchor free,anchor free因为缺少先验框这个先验知识,理论上应该是对场景的泛化性更好,同时参见旷视的官方解读:Anchor 增加了检测头的复杂度以及生成结果的数量,将大量检测结果从NPU搬运到CPU上对于某些边缘设备是无法容忍的。Yolov6中的正样本筛选,主要分成以下几个部分:①:基于两个维度来粗略筛选;②:基于simOTA进一步筛选。

tie标签的gt如图所示,找到gt的中心点(Cx,Cy),计算中心点到左上角的距离(l_l,l_t),右下角坐标(l_r,l_b),然后从两步筛选正样本:第一步粗略筛选第一个维度是如果grid的中心点落在gt中,则认为该grid所预测的框为正样本,如图所示的红色和橙色部分,第二个维度是以gt的中心点所在grid的中心点为中心点,上下左右扩充2.5个grid步长范围内的grid,则默认该grid所预测的框为正样本,如图紫色和橙色部分。这样第一步筛选出31个正样本(注:这里单独一层的正样本,Yolov6有三个网络层,分别计算出各层的正样本,并叠加)。

第二步:通过SimOTA进一步筛选:SimOTA是基于OTA的一种优化,OTA是一种动态匹配算法,具体参见旷视官方解读(https://www.zhihu.com/question/473350307/answer/2021031747)SimOTA流程如下:
①计算初筛正样本与gt的IOU,并对IOU从大到小排序,取前十之和并取整,记为b。
②计算初筛正样本的cos代价函数,将cos代价函数从小到大排列,取cos前b的样本为正样本。同时考虑同一个grid预测框被两个gt关联的情况,取cos较小的值,该预测框为对应的gt的正样本。具体细节可以参考大白的知乎文章:https://www.zhihu.com/search?type=content&q=simOTA

3. Yolov7的正负样本匹配策略

Yolov7因为基于anchor based , 集成v5和v6两者的精华,即Yolov6中的第一步的初筛换成了Yolov5中的筛选正样本的策略,保留第二步的simOTA进一步筛选策略。
同时Yolov7中有aux_head 和lead_head 两个head ,aux_head做为辅助,其筛选正样本的策略和lead_head相同,但更宽松。如在第一步筛选时,lead_head 取中心点所在grid和与之接近的两个grid对应的预测框做为正样本,如图绿色的grid, aux_head则取中心点以及周围的4个预测框为正样本。如下图绿色+蓝色区域的grid.

同时在第二步simOTA部分,lead_head 是计算初筛正样本与gt的IOU,并对IOU从大到小排序,取前十之和并取整,记为b。aux_head 则取前二十之和并取整。其他步骤相同,aux_head主要是为了增加召回率,防止漏检,lead_head再基于aux_head 做进一步筛选。

4. 结语以上为Yolov7的正负样本的匹配策略,希望对大家有帮助。同时文中如果有bug,欢迎一起讨论。

参考:[1] https://github.com/WongKinYiu/yolov7(官方github代码)
[2] https://arxiv.org/pdf/2207.02696.pdf(yolov7论文)[3]https://zhuanlan.zhihu.com/p/394392992[4]YOLOv7官方开源 | Alexey Bochkovskiy站台,精度速度超越所有YOLO,还得是AB (qq.com)[5] https://www.zhihu.com/question/473350307/answer/2021031747
[6]【yolov6系列】细节拆解网络框架 (qq.com)[7] https://arixv.org/abs/2103/14259v1 (OTA for object detection)[8] https://github.com/Megvii-BasedDetection/OTA 

利用深度学习迭代自洽的蛋白序列设计

——背景——

现有的基于蛋白结构的深度学习序列设计方法,虽然在测试的计算指标上取得了很好的成果,但是还鲜有方法经过实验的考验仍然超越传统的能量函数方法。基于这一挑战,中国科学技术大学的刘海燕教授课题组,发展了名为ABACUS-R方法,相关工作名为Rotamer-free protein sequence design based on deep learning and self-consistency,于近期发表在Nature Computational Science上。

图1. ABACUS-R方法的示意图

——方法——

ABACUS-R方法包含两部分:(1)一个encoder-decoder网络被预训练用以推断给定骨架的局部环境时中心残基的侧链类型 (2)用该encoder-decoder网络连续更新每个残基的类型,最终收敛获得自洽(self-consistent)。网络的输入是中心残基与空间上最邻近(Cα间距离)k个残基组成的局部结构。邻近残基的特征包含空间层面的相对位置与取向信息(XSPA)、序列层面的相对位置信息(XRSP)以及邻近残基的残基类型(XAA)。第i个中心残基的特征包含全零的XSPA、被mask的XAA以及骨架上的15个ϕi−2ψi−2ωi−2 ⋯ ϕi+2ψi+2ωi+2,这些特征组合起来会被映射到与邻近残基特征相同的维度。以上模型输入的信息都是旋转平移不变的。局部结构中的所有残基的特征经过可学习的映射后融合后,得到每个残基总特征En。{En; n = 0, 1, 2, … , k}经过基于transformer架构的encoder-decoder,预测每个中心残基的类型以及其他辅助任务。

自洽迭代设计的方法是:对序列随机初始化,第一轮随机选择80%的残基通过encoder-decoder并行预测其残基类型,以后每轮随机选择的残基数目逐渐下降。最终的设计结果会逐渐收敛。

作者将PDB中的非冗余结构按照两种不同的方式划分了95%作为训练集、5%作为测试集,第一种划分方式确保测试集的结构不会存在训练集中出现过的CATH拓扑,训练得到的模型为Model­­eval;第二种划分方式时随机划分Modelfinal。Model­­eval可以用来评估模型能力的无偏向性的表现,而Modelfinal使用了更丰富的数据训练表现应当更好。

——表现评估——

Encoder-decoder的架构可以进行多任务学习,除了训练序列的恢复的任务以外,还可以预测二级结构、SASA、B-factor与侧链扭转角χ1、χ2。多个任务可以增强模型设计序列的能力(图2a),Model­­eval与Model­­final都可以在测试集上最好取得50%左右准确度。在测试集上的结果显示,虽然有些残基类型没有恢复正确,但是模型也学习到了替换为性质相似的残基(图2b)。

图2. Model­­eval在不同任务类型下的表现

Decoder网络输出的是每个位置上残基类型的-logP,类似于选择不同残基对应的能量,所以作者将ProTherm数据集中蛋白突变的ΔΔG与模型计算出相应的−ΔΔlogits进行了比较,发现二者有一定的相关性(图2d),说明模型一定程度上学习到了能量。

接着,作者验证了模型的自洽性,测试集中100个蛋白属于CATH的三个大类,对其中的每个蛋白从随机序列出发设计10条序列,随着迭代的次数变多,平均-logP会趋于收敛(图3a),同时未收敛的残基比例也会收敛(图3b)。不同CATH类别的骨架上取得的序列恢复率差距不大(图3c)。同一蛋白骨架设计出的序列会有很高的相似性(0.76-0.89)。设计出的序列与天然序列相比,序列的成分高度相似(图3d),Pearson相关系数达到了0.93,但GLU、ALA与LYS出现得更频繁,而Gln、His、Met出现得更少。此外,ABACUS-R设计出的序列与ABACUS设计出的序列相比,平均每个残基的Rosetta打分更低(图3e),而平均的-logP打分却更高(图3f),这意味着ABACUS-R学习到的能量与Rosetta打分函数存在正交的部分。

图3. ABACUS-R的自洽能力、设计能力以及学习到的能量与Rosetta打分的比较

相较于其他深度学习方法在单个残基恢复任务上的表现,ABACUS-R超过了除DenseCPD外的所有方法(表1),在整条序列重设计任务上ABACUS-R在两个测试集上都取得了最好的表现(表2)。

最后,作者在3种天然骨架(PDB ID: 1r26, 1cy5 and 1ubq)上通过实验验证了ABACUS-R的设计能力。设计的方法有两种:第一种采用迭代自洽的设计方法(生成序列的多样性低),第二种采用迭代时对decoder输出结果进行采样(生成序列的多样性高,但-logP能量也略高)。

第一种方法设计的27条序列有26条成功表达,体积排阻色谱与1H NMR实验结果显示所有的蛋白都以单体形式存在,示差扫描量热实验显示5条序列有很好的热稳定性( 97~117 C )。最终,1r26的3个设计与1cy5的1个设计成功解出了晶体结构,Cα RMSD位于0.51~0.88 Å,而1ubq的1个设计虽然没有解出结构,但已有的实验结果显示它折叠成了明确的三维结构。

第二种方法对同一骨架设计的序列相似度在58%左右。30条设计的序列中,25条被成功表达,23条能被可溶地纯化。所有设计同样都是单体存在并且折叠成了明确的三维结构,5个设计有很好的热稳定性(85~118 C)。最终,1r26的1个设计被成功解出了晶体结构,Cα RMSD为0.67 Å。相较方法一的自洽设计,方法二设计成功率下降,成功设计的蛋白热稳定性也略微下降,但作者认为可以接受。

最后,作者展示了所有1r26设计晶体结构核心的侧链pack(图4a,b),以及1cy5设计晶体结构的侧链的极性作用(图4c),说明了ABACUS-R学会了设计侧链的组合以pack好的结构。

——总结——

总之,作者开发的ABACUS-R方法在不需要显示地模拟侧链,可以学习到给定结构下侧链类型的能量打分。ABACUS-R不仅取得了很好的序列恢复度,还在实验上取得了很好的成功率。

CVPR2022 | 自注意力和卷积的融合(ACmix)

前言  通常convolution和self-attention被认为是表征学习的两个有力且相互对等的不用方法。在本文中,作者发掘了两者之间的潜在关系,两者的大部分计算实际上是相通的。

作者将K x K 的传统卷积分解为k方个1 x 1的卷积,然后将self-attention模块中queries、 keys等解释为多个1 x 1的卷积,然后计算注意力权重和聚合值。

该模型在图像识别和down streamtasks取得了优异的结果。

论文题目:On the Integration of Self-Attention and Convolution

论文链接:https://openaccess.thecvf.com/content/CVPR2022/papers/Pan_On_the_Integration_of_Self-Attention_and_Convolution_CVPR_2022_paper.pdf

源代码:https://github.com/LeapLabTHU/ACmix         https://gitee.com/mindspore/models.

卷积神经网络与自注意力在图像识别、语义分割等方面取得了飞速的发展。随着transformers的出现,attention-based的方法取得了更加优异的性能。尽管两种方法都取得了成功,但是两者遵循不同的设计思路。前者在特征图中共享权重,后者通过动态计算像素间的相似度函数从而能够捕获不同区域的特征进而获得更多的特征。

在一些工作中,研究人员仅使用self-attention来独立地构建视觉任务模型,这一做法的有效性在一些任务中得到了验证,其完全可以代替卷积操作。Vision Transformer表明只要给定足够的数据,就可以获得优异的结果,这一做法在点云分割等其他视觉任务上也取得了不错的效果。Hu等人提出自适应确定聚合的方法;Wang等人通过引入非局部块来增加感受野来比较全局像素之间的相似性;Conformer将transformer与独立的CNN结合来整合两个特征。

早期的工作从几个不同的角度探索了convolution和self-attention的组合,CBAM等证明self-attention可以作为convolution的增强;SAN等提出self-attention可以代替传统的convolution;AA-ResNet等在设计独立架构方面存在局限性。现有的方法仍将自注意力和卷积视为不同的部分,因此它们之间的关系并未得到充分利用。

本文主要贡献


1、揭示了self-attention和convolution之间的潜在关系,为了解两个模块间的关联和设计新的learning paradigms提供了新的视角。

2、self-attention和convolution的组合使得两者的功能得到整合,经验及实验证明混合模型的性能始终优于纯卷积或者自注意力模型。

方法


1、将self-attention和convolution关联起来

标准卷积可以分为两个部分,第一个阶段为一个特征学习模块,通过执行1 x 1的卷积共享相同的操作将特征投影到更深的空间,第二阶段对应于特征聚合的过程。作为结论,分析表明卷积和自注意力在通过1 x 1的卷积投影输入特征图实际上共享相同的操作,聚合操作是轻量级的,并不需要获取额外的学习参数。卷积和自注意力的示意图如下图所示。

2、将self-attention和convolution进行整合

作者根据上述的分析提出ACmix模型,如下图所示:

ACmix模型分为两个阶段,在阶段一,输入特征由三个1 x 1的卷积操作并被reshape成N块,由此获得丰富的3 x N的特征图;在阶段二,对于self-attention,作者将中间特征收集到N组中,每组包含三个部分特征,其中每个1 x 1卷积对应一个。通过移动和聚合生成的特征(用以下公式表达),并像传统方法一样从本地感受野中收集信息。

3、对Shift和Summation进行改进

中间特征遵循传统的卷积模块中的Shift和Summation操作,尽管这些操作在理论上是轻量级的,但是难以矢量化实现,这会极大影响计算的实际效率。作者采用了固定内核的深度卷积来解决这一问题,如下图所示。

在此基础上,作者额外引入了一些配置来增强模块的灵活性,如下图所示,作者将卷积核释放为可学习的权重,对内核初始化,这不仅改善了模型容量,而且能够保持原有的能力,同时使用多组卷积内核来匹配卷积和自注意力路径的输出通道维度。

4、ACmix的计算成本

作者总结了ACmix的FLOPS和参数量,在stage1 的训练参数与self-attention相同,并且比传统的卷积更轻,在第二阶段,引入了额外的计算开销,包含轻量级的全连接层等。

5、向其他注意力模式推广

作者所提出的ACmix独立于自注意力机制,并且很容易衍生出其他变体,注意力的权重可以表示为

实验

1、ImageNet分类

作者在4个baseline models上应用了ACmix,包括ResNet, SAN, PVT和 Swin-Transformer。

2、语义分割

作者在ADE20K上对比了Semantic-FPN、UperNet 两种方法

3、目标检测

在COCO benchmark上开展了实验,实验结果证实了ACmix的性能优于baseline

结论


在本文中,作者发掘了self-attention和convolution之间的潜在关系,两者的大部分计算实际上是相通的,所提的ACmix在目标检测、语义分割等多个任务上展示了优异的性能。

Yolo 系列之 Yolov7 基础网络结构

YOLOV7 整体结构

我们先整体来看下 YOLOV7,首先对输入的图片 resize 为 640×640 大小,输入到 backbone 网络中,然后经 head 层网络输出三层不同 size 大小的 feature map,经过 Rep 和 conv输出预测结果,这里以 coco 为例子,输出为 80 个类别,然后每个输出(x ,y, w, h, o) 即坐标位置和前后背景,3 是指的 anchor 数量,因此每一层的输出为 (80+5)x3 = 255再乘上 feature map 的大小就是最终的输出了。

  1. backbone
    YOLOV7 的 backbone 如下图所示

总共有 50 层, 我在上图用黑色数字把关键层数标示出来了。 首先是经过 4 层卷积层,如下图,CBS 主要是 Conv + BN + SiLU 构成,我在图中用不同的颜色表示不同的 size 和 stride, 如 (3, 2) 表示卷积核大小为 3 ,步长为 2。 在 config 中的配置如图。

经过 4个 CBS 后,特征图变为 160 * 160 * 128 大小。随后会经过论文中提出的 ELAN 模块,ELAN 由多个 CBS 构成,其输入输出特征大小保持不变,通道数在开始的两个 CBS 会有变化, 后面的几个输入通道都是和输出通道保持一致的,经过最后一个 CBS 输出为需要的通道。

MP 层 主要是分为 Maxpool 和 CBS , 其中 MP1 和 MP2 主要是通道数的比变化。


backbone的基本组件就介绍完了,我们整体来看下 backbone,经过 4 个 CBS 后,接入例如一个 ELAN ,然后后面就是三个 MP + ELAN 的输出,对应的就是 C3/C4/C5 的输出,大小分别为 80 * 80 * 512 , 40 * 40 * 1024, 20 * 20 * 1024。 每一个 MP 由 5 层, ELAN 有 8 层, 所以整个 backbone 的层数为 4 + 8 + 13 * 3 = 51 层, 从 0 开始的话,最后一层就是第50层。

3、head

YOLOV7 head 其实就是一个 pafpn 的结构,和之前的YOLOV4,YOLOV5 一样。首先,对于 backbone 最后输出的 32 倍降采样特征图 C5,然后经过 SPPCSP,通道数从1024变为512。先按照 top down 和 C4、C3融合,得到 P3、P4 和 P5;再按 bottom-up 去和 P4、P5 做融合。这里基本和 YOLOV5 是一样的,区别在于将 YOLOV5 中的 CSP 模块换成了 ELAN-H 模块, 同时下采样变为了 MP2 层。 ELAN-H 模块是我自己命名的,它和 backbone 中的 ELAN 稍微有点区别就是 cat 的数量不同。

对于 pafpn 输出的 P3、P4 和 P5 , 经过 RepConv 调整通道数,最后使用 1×1 卷积去预测 objectness、class 和 bbox 三部分。 RepConv 在训练和推理是有一定的区别。训练时有三个分支的相加输出,部署时会将分支的参数重参数化到主分支上

YOLOv7来临:论文详读和解析+训练自己数据集

2022年7月,YOLOv7来临,

论文链接:https://arxiv.org/abs/2207.02696

代码链接:https://github.com/WongKinYiu/yolov7

文章摘自https://mp.weixin.qq.com/s/5qK1FIU7qp0Sv3IE49-t_w

在v7论文挂出不到半天的时间,YOLOv3和YOLOv4的官网上均挂上了YOLOv7的链接和说明,由此看来大佬们都比较认可这款检测器。

官方版的YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比 YOLOX 快180%(FPS),比 Dual-Swin-T 快1200%(FPS),比 ConvNext 快550%(FPS),比 SWIN-L快500%(FPS)。在5FPS到160FPS的范围内,无论是速度或是精度,YOLOv7都超过了目前已知的检测器,并且在GPU V100上进行测试, 精度为56.8% AP的模型可达到30 FPS(batch=1)以上的检测速率,与此同时,这是目前唯一一款在如此高精度下仍能超过30FPS的检测器。另外,YOLOv7所获得的成果不止于此,例如:

  • YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by +500% FPS faster than SWIN-L Cascade R-CNN (53.9% AP, 9.2 FPS A100 b=1)
  • YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by +550% FPS faster than ConvNeXt-RCNN (55.2% AP, 8.6 FPS A100 b=1)
  • YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by +120% FPS faster than YOLOv5-X6-v6.1 (55.0% AP, 38 FPS V100 b=1)
  • YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by +1200% FPS faster than Dual-Swin-RCNN (53.6% AP, 6.5 FPS V100 b=1)
  • YOLOv7 (51.2% AP, 161 FPS V100 b=1) by +180% FPS faster than YOLOX-X (51.1% AP, 58 FPS V100 b=1)

本文做出的贡献如下:

  1. 设计了几种可训练的bag-of-freebies,使实时检测器可以在不提高推理成本的情况下大大提高检测精度;
  2. 对于目标检测的发展,作者发现了两个新的问题,即模块重参化如何高效替代原始模块,以及动态标签分配策略如何处理好不同输出层的分配。因此在本文中提出了方法进行解决。
  3. 作者为实时探测器提出了“扩展”和“复合缩放”(extend” and “compound scaling”)方法,可以更加高效地利用参数和计算量,同时,作者提出的方法可以有效地减少实时探测器50%的参数,并且具备更快的推理速度和更高的检测精度。(这个其实和YOLOv5或者Scale YOLOv4的baseline使用不同规格分化成几种模型类似,既可以是width和depth的缩放,也可以是module的缩放)

2.1 实时检测器

目前最先进的实时探测器主要基于YOLO和FCOS,如果需要研发更先进的实时检测器,通常需要具备以下特征:

  • (1)更快和更高效的网络架构;
  • (2)更有效的特征积分方法;
  • (3)更准确的检测方法;
  • (4)更鲁棒的损失函数;
  • (5)更有效的标签分配方法;
  • (6)更有效的训练方式。

2.2 模型重参化

模型重参化策略在推理阶段将多个模块合并为一个计算模块,可以看作是一种集成技术(model ensemble,其实笔者觉得更像是一种基于feature的distillation),可以将其分为模块级集成和模型级集成两类。对于模型级重新参数化有两种常见的操作:

  • 一种是用不同的训练数据训练多个相同的模型,然后对多个训练模型的权重进行平均。
  • 一种是对不同迭代次数下模型权重进行加权平均。

模块重参化是近年来一个比较流行的研究课题。这种方法在训练过程中将一个整体模块分割为多个相同或不同的模块分支,但在推理过程中将多个分支模块集成到一个完全等价的模块中。然而,并不是所有提出的重参化模块都可以完美地应用于不同的架构。考虑到这一点,作者开发了新的重参数化模块,并为各种架构设计了相关的应用程序策略。下图是作者使用重参化实现构建的多个module,按照分组数不同进行排列,为什么作者会选择32的分组数,应该搞过部署的佬们会清楚一些,模块参考:https://github.com/WongKinYiu/yolov7/blob/main/models/common.py~

2.3 模型缩放

模型缩放通过扩大或缩小baseline,使其适用于不同的计算设备。模型缩放方法通常包括不同的缩放因子,如:

  • input size(输入图像大小)
  • depth(层数)
  • width(通道数)
  • stage(特征金字塔数量)

从而在网络的参数量、计算量、推理速度和精度方面实现很好的权衡。网络架构搜索(NAS)也是目前常用的模型缩放方法之一

三、模型设计架构

3.1 高效的聚合网络

在大多数关于设计高效网络的论文中,主要考虑的因素是参数量、计算量和计算密度。但从内存访存的角度出发出发,还可以分析输入/输出信道比、架构的分支数和元素级操作对网络推理速度的影响(shufflenet论文提出)。在执行模型缩放时还需考虑激活函数,即更多地考虑卷积层输出张量中的元素数量。

图2(b)中CSPVoVNet是VoVNet的一个变体。除了考虑上述几个设计问题外,CSPVoVNet的体系结构还分析了梯度路径,使不同层能够学习更多样化的特征。上面描述的梯度分析方法还能使推理速度更快、模型更准确(看下图!其实和Resnext有点像,但比它复杂一些)。

  • 图2(c)中的ELAN出于以下设计考虑——“如何设计一个高效的网络?”得出结论是:通过控制最短最长梯度路径,更深的网络可以有效地进行学习并更好地收敛。
  • 因此,在本文中,作者提出了基于ELAN的扩展版本E-ELAN,其主要架构如图2(d)所示。在大规模ELAN中,无论梯度路径长度和计算模块数量如何,都达到了稳定的状态。但如果更多计算模块被无限地堆叠,这种稳定状态可能会被破坏,参数利用率也会降低。本文提出的E-ELAN采用expand、shuffle、merge cardinality结构,实现在不破坏原始梯度路径的情况下,提高网络的学习能力。

在体系结构方面,E-ELAN只改变了计算模块中的结构,而过渡层的结构则完全不变。作者的策略是利用分组卷积来扩展计算模块的通道和基数,将相同的group parameter和channel multiplier用于计算每一层中的所有模块。然后,将每个模块计算出的特征图根据设置的分组数打乱成G组,最后将它们连接在一起。此时,每一组特征图中的通道数将与原始体系结构中的通道数相同。最后,作者添加了G组特征来merge cardinality。除了维护原始的ELAN设计架构外,E-ELAN还可以指导不同的分组模块来学习更多样化的特性。(难以置信,要是在CPU上运行,分分钟可能爆)

3.2 基于连接的模型的模型缩放

缩放这个就不说了,和YOLOv5、Scale YOLOv4、YOLOX类似。要不就depth and width,要不就module scale,可参考scale yolov4的P4、P5、P5结构。

四、可训练的赠品礼包(bag-of-freebies)

4.1 卷积重参化

尽管RepConv在VGG上取得了优异的性能,但将它直接应用于ResNet和DenseNet或其他网络架构时,它的精度会显着降低。作者使用梯度传播路径来分析不同的重参化模块应该和哪些网络搭配使用。通过分析RepConv与不同架构的组合以及产生的性能,作者发现RepConv中的identity破坏了ResNet中的残差结构和DenseNet中的跨层连接,这为不同的特征图提供了梯度的多样性(题外话,之前在YOLOv5 Lite上做过此类实验,结果也是如此,因此v5Lite-g的模型也是砍掉了identity,但分析不出原因,作者也没给出具体的分析方案,此处蹲坑)。

基于上述原因,作者使用没有identity连接的RepConv结构。图4显示了作者在PlainNet和ResNet中使用的“计划型重参化卷积”的一个示例。

4.2 辅助训练模块

深度监督是一种常用于训练深度网络的技术,其主要概念是在网络的中间层增加额外的辅助头,以及以辅助损失为指导的浅层网络权重。即使对于像ResNet和DenseNet这样收敛效果好的网络结构,深度监督仍然可以显着提高模型在许多任务上的性能(这个和Nanodet Plus相似,按笔者理解可以当成是深层局部网络的ensemble,最后将辅助头和检测头的权重做融合)。图5(a)和(b)分别显示了“没有”和“有”深度监督的目标检测器架构,在本文中,作者将负责最终的输出头称为引导头,将用于辅助训练的头称为辅助头。

接下来讨论标签分配的问题。在过去,在深度网络的训练中,标签分配通常直接指的是ground truth,并根据给定的规则生成hard label(未经过softmax)。然而近年来,以目标检测为例,研究者经常利用网络预测的质量分布来结合ground truth,使用一些计算和优化方法来生成可靠的软标签(soft label)。例如,YOLO使用bounding box预测和ground truth的IoU作为软标签。

在本文中,作者将网络预测结果与ground truth一起考虑后再分配软标签的机制称为“标签分配器”。无论辅助头或引导头,都需要对目标进行深度监督。那么,‘’如何为辅助头和引导头合理分配软标签?”,这是作者需要考虑的问题。目前最常用的方法如图5(c)所示,即将辅助头和引导头分离,然后利用它们各自的预测结果和ground truth执行标签分配。

本文提出的方法是一种新的标签分配方法,通过引导头的预测来引导辅助头以及自身。换句话说,首先使用引导头的prediction作为指导,生成从粗到细的层次标签,分别用于辅助头和引导头的学习,具体可看图5(d)和(e)。

Lead head guided label assigner: 引导头引导“标签分配器”预测结果和ground truth进行计算,并通过优化(在utils/loss.py的SigmoidBin()函数中,传送门:https://github.com/WongKinYiu/yolov7/blob/main/utils/loss.py 生成软标签。这组软标签将作为辅助头和引导头的目标来训练模型。(之前写过一篇博客,【浅谈计算机视觉中的知识蒸馏】]https://zhuanlan.zhihu.com/p/497067556)详细讲过soft label的好处)这样做的目的是使引导头具有较强的学习能力,由此产生的软标签更能代表源数据与目标之间的分布差异和相关性。此外,作者还可以将这种学习看作是一种广义上的余量学习。通过让较浅的辅助头直接学习引导头已经学习到的信息,引导头能更加专注于尚未学习到的残余信息。

Coarse-to-fine lead head guided label assigner: Coarse-to-fine引导头使用到了自身的prediction和ground truth来生成软标签,引导标签进行分配。然而,在这个过程中,作者生成了两组不同的软标签,即粗标签和细标签,其中细标签与引导头在标签分配器上生成的软标签相同,粗标签是通过降低正样本分配的约束,允许更多的网格作为正目标(可以看下FastestDet的label assigner,不单单只把gt中心点所在的网格当成候选目标,还把附近的三个也算进行去,增加正样本候选框的数量)。原因是一个辅助头的学习能力并不需要强大的引导头,为了避免丢失信息,作者将专注于优化样本召回的辅助头。对于引导头的输出,可以从查准率中过滤出高精度值的结果作为最终输出。然而,值得注意的是,如果粗标签的附加权重接近细标签的附加权重,则可能会在最终预测时产生错误的先验结果。

4.3 其他可训练的bag-of-freebies

  1. Batch normalization:目的是在推理阶段将批归一化的均值和方差整合到卷积层的偏差和权重中。
  2. YOLOR中的隐式知识结合卷积特征映射和乘法方式:YOLOR中的隐式知识可以在推理阶段将计算值简化为向量。这个向量可以与前一层或后一层卷积层的偏差和权重相结合。
  3. EMA Model:EMA 是一种在mean teacher中使用的技术,作者使用 EMA 模型作为最终的推理模型。

五、实验

5.1 实验环境

作者为边缘GPU、普通GPU和云GPU设计了三种模型,分别被称为YOLOv7-Tiny、YOLOv7和YOLOv7-W6。同时,还使用基本模型针对不同的服务需求进行缩放,并得到不同大小的模型。对于YOLOv7,可进行颈部缩放(module scale),并使用所提出的复合缩放方法对整个模型的深度和宽度进行缩放(depth and width scale),此方式获得了YOLOv7-X。对于YOLOv7-W6,使用提出的缩放方法得到了YOLOv7-E6和YOLOv7-D6。此外,在YOLOv7-E6使用了提出的E-ELAN,从而完成了YOLOv7-E6E。由于YOLOv7-tincy是一个面向边缘GPU架构的模型,因此它将使用ReLU作为激活函数。作为对于其他模型,使用SiLU作为激活函数。

选择当前先进的检测器YOLOR作为基线。在相同设置下,表1显示了本文提出的YOLOv7模型和其他模型的对比。从结果中可以看出:

  • 与YOLOv4相比,YOLOv7的参数减少了75%,计算量减少了36%,AP提高了1.5%。
  • 与最先进的YOLOR-CSP相比,YOLOv7的参数少了43% ,计算量少了15%,AP高了0.4%。
  • 在小模型的性能中,与YOLOv4-tiny相比,YOLOv7-Tiny减少了39%的参数量和49%的计算量,但保持相同的AP。
  • 在云GPU模型上,YOLOv7模型仍然具有更高的AP,同时减少了19%的参数量和33%的计算量。

5.3 与sota算法的比较

本文将所提出的方法与通用GPU上或边缘GPU上最先进的的目标检测器进行了比较

  • 比较YOLOv7-Tiny-SiLU和YOLOv5-N(v6.1),YOLOv7-Tiny-SiLU在速度上快127帧,准确率提高10.7%。
  • YOLOv7在帧率为161帧时有51.4%的AP,而相同AP的PP-YOLOE-L只有78帧,且参数l少41%。
  • YOLOv7-X在114FPS时,比YOLOv5-L(v6.1)99FPS的推理速度更快,同时可以提高3.9%的AP。
  • YOLOv7-X与YOLOv5-X(v6.1)相比,YOLOv7-X的推理速度要快31fps。此外,在参数量和计算量方面,YOLOv7-X比YOLOv5-X(v6.1)减少了22%的参数和8%的计算量,但AP提高了2.2%。
  • 使用输入分辨率1280,YOLOv7与YOLOR进行比较,YOLOv7-W6的推理速度比YOLOR-P6快8FPS,检测率也提高了1%的AP。
  • 至于YOLOv7-E6和YOLOv5-X6(v6.1)比较时,前者的AP增益比后者高0.9%,但参数减少45%,计算量减少63%,推理速度提高了47%。
  • YOLOv7-D6的推理速度与YOLOR-E6接近,但AP提高了0.8%。
  • YOLOv7-E6E的推理速度与YOLOR-D6接近,但AP提高了0.3%。

六、结论

本文提出了一种新的实时检测器。在研究过程中,本文发现了重参化模块的替换问题和动态标签的分配问题。为了解决这一问题,提出了一种可训练的bag-of-freebies策略来提高目标检测的精度。基于此,本文开发的YOLOv7系列目标检测模型获得了最先进的结果。

训练自己数据:

数据集准备:准备coco类型数据 ,新建MyDataCoco.yaml

# COCO 2017 dataset http://cocodataset.org

# download command/URL (optional)
# download: bash ./scripts/get_coco.sh

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train:yolov7/data/train.txt  # 118287 images
val:yolov7/data/val.txt  # 5000 images
test:yolov7/data/test.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 10

# class names
names: ['lighthouse',
'sailboat',
'buoy',
'railbar',
'cargoship',
'navalvessels',
'passengership',
'dock',
'submarine',
'fishingboat' ]

 results:

目标检测: Anchor-based 与 Anchor-free

目标检测技术包括anchor-based和anchor-free两大类:

1、基于anchor-based的技术包括一个阶段和两个阶段的检测。其中一阶段的检测技术包括SSD,DSSD,RetinaNet,RefineDet,YOLOV3等,二阶段技术包括Faster-RCNN,R-FCN,FPN,Cascade R-CNN,SNIP等。一般的,两个阶段的目标检测会比一个阶段的精度要高,但一个阶段的算法速度会更快。

二步法相对于一步法有以下几个优势:

(a).二阶段的分类

(b).二阶段的回归

(c).二阶段的特征

(d).特征校准

为了能让一步法也具备二步法的这些个优势,提出了RefineDet、SRN、AlignDet等一些列检测算法。

2、 anchor-free的技术包括基于Keypoint与Segmentation两类。其中基于Keypoint技术包括CornerNet,CenterNet,CornerNet-Lite等,基于Segmentation的技术包括FSAF,FCOS,FoveaBox等。

anchor-base存在的问题:

•与锚点框相关超参 (scale、aspect ratio、IoU Threshold) 会较明显的影响最终预测效果;(尺度(scale)和长宽比( aspect ratio)是比较难设计的。这需要较强的先验知识。)

•预置的锚点大小、比例在检测差异较大物体时不够灵活;

•大量的锚点会导致运算复杂度增大,产生的参数较多;

•容易导致训练时negative与positive的比例失衡。(冗余框非常之多:一张图像内的目标毕竟是有限的,基于每个anchor设定大量anchor box会产生大量的easy-sample,即完全不包含目标的背景框。这会造成正负样本严重不平衡问题,也是one-stage算法难以赶超two-stage算法的原因之一。)

此外基于anchor box进行目标类别分类时,IOU阈值超参设置也是一个问题,0.5?0.7?有同学可能也想到了CVPR2018的论文Cascade R-CNN,专门来讨论这个问题。

anchor-base 优点:

(1)使用anchor机制产生密集的anchor box,使得网络可直接在此基础上进行目标分类及边界框坐标回归;

(2)密集的anchor box可有效提高网络目标召回能力,对于小目标检测来说提升非常明显。

Anchor-free算法的优点:

•使用类似分割的思想来解决目标检测问题;

•不需要调优与anchor相关的超参数;

•避免大量计算GT boxes和anchor boxes 之间的IoU,使得训练过程占用内存更低。

anchor-free是通过另外一种手段来解决检测问题的。同样分为两个子问题,即确定物体中心和对四条边框的预测。预测物体中心时,将中心预测融入到类别预测的 target 里面,也可以预测一个 soft 的 centerness score。对于四条边框的预测,则比较一致,都是预测该像素点到 ground truth 框的四条边距离,不过会使用一些 trick 来限制 regress 的范围。

anchor-free类算法归纳:

A.基于多关键点联合表达的方法

a.CornerNet/CornerNet-lite:左上角点+右下角点

b.ExtremeNet:上下左右4个极值点+中心点

c.CenterNet:Keypoint Triplets for Object Detection:左上角点+右下角点+中心点

d.RepPoints:9个学习到的自适应跳动的采样点

e.FoveaBox:中心点+左上角点+右下角点

f.PLN:4个角点+中心点

B.基于单中心点预测的方法

a.CenterNet:Objects as Points:中心点+宽度+高度

b.CSP:中心点+高度(作者预设了目标宽高比固定,根据高度计算出宽度)

c.FCOS:中心点+到框的2个距离