github地址:
https://github.com/labmlai/annotated_deep_learning_paper_implementations
这是神经网络和相关算法的简单 PyTorch 实现的集合。这些实现与解释一起记录,
该网站 将这些呈现为并排格式化的注释。我们相信这些将帮助您更好地理解这些算法。
我们几乎每周都在积极维护这个 repo 并添加新的实现。 更新。
模块:
✨ Transformers
- Multi-headed attention
- Transformer building blocks
- Transformer XL
- Rotary Positional Embeddings
- RETRO
- Compressive Transformer
- GPT Architecture
- GLU Variants
- kNN-LM: Generalization through Memorization
- Feedback Transformer
- Switch Transformer
- Fast Weights Transformer
- FNet
- Attention Free Transformer
- Masked Language Model
- MLP-Mixer: An all-MLP Architecture for Vision
- Pay Attention to MLPs (gMLP)
- Vision Transformer (ViT)
- Primer EZ
- Hourglass
✨ Recurrent Highway Networks
✨ LSTM
✨ HyperNetworks – HyperLSTM
✨ ResNet
✨ ConvMixer
✨ Capsule Networks
✨ Generative Adversarial Networks
- Original GAN
- GAN with deep convolutional network
- Cycle GAN
- Wasserstein GAN
- Wasserstein GAN with Gradient Penalty
- StyleGAN 2
✨ Diffusion models
✨ Sketch RNN
✨ Graph Neural Networks
✨ Counterfactual Regret Minimization (CFR)
Solving games with incomplete information such as poker with CFR.
✨ Reinforcement Learning
- Proximal Policy Optimization with Generalized Advantage Estimation
- Deep Q Networks with with Dueling Network, Prioritized Replay and Double Q Network.
✨ Optimizers
✨ Normalization Layers
- Batch Normalization
- Layer Normalization
- Instance Normalization
- Group Normalization
- Weight Standardization
- Batch-Channel Normalization
- DeepNorm
✨ Distillation
✨ Adaptive Computation
✨ Uncertainty
Installation
pip install labml-nn