Python装饰器:python中的@符号的作用 以及 torch中经常出现的 @torch.no_grad()

@符号是装饰器(修饰符)的语法糖,在定义函数的时候使用,避免再一次赋值操作

装饰器(Decorators)是 Python 的一个重要部分。简单地说:他们是修改其他函数的功能的函数。他们有助于让我们的代码更简短,也更Pythonic(Python范儿)。大多数初学者不知道在哪儿使用它们,所以我将要分享下,哪些区域里装饰器可以让你的代码更简洁。 首先,让我们讨论下如何写你自己的装饰器。

‘@’符号用作函数修饰符是python2.4新增加的功能,修饰符必须出现在函数定义前一行,不允许和函数定义在同一行。也就是说@A def f(): 是非法的。只可以在模块或类定义层内对函数进行修饰,不允许修饰一个类。一个修饰符就是一个函数,它将被修饰的函数做为参数,并返回修饰后的同名函数或其它可调用的东西。

实例(1):

def spamrun(fn):
   def sayspam(*args):
       print("spam,spam,spam")
   return sayspam
@spamrun
def useful(a,b):
   print (a**2+b**2)

执行: useful(3,4)

返回:spam,spam,spam

def addspam(fn):
   def new(*args):
       print "spam,spam,spam"
       return fn(*args)
   return new

@addspam
def useful(a,b):
   print a**2+b**2

执行: useful(4,3)

结果:

spam,spam,spam

25

@torch.no_grad()

@torch.no_grad()
def eval():
	...

@torch.no_grad()后面的函数的数据不需要计算梯度,也不会进行反向传播

Python装饰器:

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

先来看一个简单例子:

def foo():
    print('i am foo')

现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:

def foo():
    print('i am foo')
    logging.info("foo is running")

bar()、bar2()也有类似的需求,怎么做?再写一个logging在bar函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门处理日志 ,日志处理完之后再执行真正的业务代码

def use_logging(func):
    logging.warn("%s is running" % func.__name__)
    func()

def bar():
    print('i am bar')

use_logging(bar)

逻辑上不难理解, 但是这样的话,我们每次都要将一个函数作为参数传递给use_logging函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行bar(),但是现在不得不改成use_logging(bar)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

简单装饰器

def use_logging(func):

    def wrapper(*args, **kwargs):
        logging.warn("%s is running" % func.__name__)
        return func(*args, **kwargs)
    return wrapper

def bar():
    print('i am bar')

bar = use_logging(bar)
bar()

函数use_logging就是装饰器,它把执行真正业务方法的func包裹在函数里面,看起来像bar被use_logging装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

方法一:不用语法糖@符号​​​​​​​

# 装饰器不传入参数时
f = decorator(函数名)

# 装饰器传入参数时
f = (decorator(参数))(函数名)


方法二:采用语法糖@符号​​​​​​​

# 已定义的装饰器
@decorator 
def f():  
    pass

# 执行被装饰过的函数 
f()
def use_logging(func):

    def wrapper(*args, **kwargs):
        logging.warn("%s is running" % func.__name__)
        return func(*args)
    return wrapper

@use_logging
def foo():
    print("i am foo")

@use_logging
def bar():
    print("i am bar")

bar()

如上所示,这样我们就可以省去bar = use_logging(bar)这一句了,直接调用bar()即可得到想要的结果。如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

带参数的装饰器

装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如@use_logging,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

def use_logging(level):
    def decorator(func):
        def wrapper(*args, **kwargs):
            if level == "warn":
                logging.warn("%s is running" % func.__name__)
            return func(*args)
        return wrapper

    return decorator

@use_logging(level="warn")
def foo(name='foo'):
    print("i am %s" % name)

foo()

上面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我 们使用@use_logging(level=”warn”)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

类装饰器

再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

__call__方法 : 在生成一个类的实例时,自动自行一次call方法

当执行Foo时候生成一个实例,就会自动调用__call__方法

class Foo(object):
    def __init__(self, func):
    self._func = func

def __call__(self):
    print ('class decorator runing')
    self._func()
    print ('class decorator ending')

@Foo
def bar():
    print ('bar')

bar()

functools.wraps

使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

装饰器

def logged(func):
    def with_logging(*args, **kwargs):
        print func.__name__ + " was called"
        return func(*args, **kwargs)
    return with_logging

函数

@logged
def f(x):
   """does some math"""
   return x + x * x

该函数完成等价于:

def f(x):
    """does some math"""
    return x + x * x
f = logged(f)

不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。

print f.__name__    # prints 'with_logging'
print f.__doc__     # prints None

这个问题就比较严重的,好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

from functools import wraps
def logged(func):
    @wraps(func)
    def with_logging(*args, **kwargs):
        print func.__name__ + " was called"
        return func(*args, **kwargs)
    return with_logging

@logged
def f(x):
    """does some math"""
    return x + x * x

print f.__name__  # prints 'f'
print f.__doc__   # prints 'does some math'

内置装饰器

@staticmathod、@classmethod、@property

@property

把类内方法当成属性来使用,必须要有返回值,相当于getter;

假如没有定义 @func.setter 修饰方法的话,就是只读属性

class Car:

    def __init__(self, name, price):
        self._name = name
        self._price = price    
     
    @property
    def car_name(self):
        return self._name
        
     # car_name可以读写的属性   
     @car_name.setter
     def car_name(self, value):
         self._name = value
         
     # car_price是只读属性 
     @property
     def car_price(self):
         return str(self._price) + '万'
         
benz = Car('benz', 30)

print(benz.car_name)   # benz
benz.car_name = "baojun"
print(benz.car_name)   # baojun
print(benz.car_price)  # 30万

@staticmethod

静态方法,不需要表示自身对象的self和自身类的cls参数,就跟使用函数一样。

静态方法的使用场景:

如果在方法中不需要访问任何实例方法和属性,纯粹地通过传入参数并返回数据的功能性方法,那么它就适合用静态方法来定义,它节省了实例化对象的开销成本,往往这种方法放在类外面的模块层作为一个函数存在也是没问题的,而放在类中,仅为这个类服务。

@classmethod

类方法,不需要self参数,但第一个参数需要是表示自身类的cls参数。

类方法的使用场景有:

作为工厂方法创建实例对象,例如内置模块 datetime.date 类中就有大量使用类方法作为工厂方法,以此来创建date对象。如果希望在方法里面调用静态类,那么把方法定义成类方法是合适的,因为要是定义成静态方法,那么你就要显示地引用类A,这对继承来说可不是一件好事情。

例子

class Demo(object):

    text = "三种方法的比较"
    
    def instance_method(self):
        print("调用实例方法")

    @classmethod
    def class_method(cls):
        print("调用类方法")
        print("在类方法中 访问类属性 text: {}".format(cls.text))
        print("在类方法中 调用实例方法 instance_method: {}".format(cls().instance_method()))

    @staticmethod
    def static_method():
        print("调用静态方法")
        print("在静态方法中 访问类属性 text: {}".format(Demo.text))
        print("在静态方法中 调用实例方法 instance_method: {}".format(Demo().instance_method()))

if __name__ == "__main__":
    # 实例化对象
    d = Demo()
    
    # 对象可以访问 实例方法、类方法、静态方法
    # 通过对象访问text属性
    print(d.text)
    
    # 通过对象调用实例方法
    d.instance_method()
    
    # 通过对象调用类方法
    d.class_method()
    
    # 通过对象调用静态方法
    d.static_method()
    
    # 类可以访问类方法、静态方法
    # 通过类访问text属性
    print(Demo.text)
    
    # 通过类调用类方法
    Demo.class_method()
    
    # 通过类调用静态方法
    Demo.static_method()

@staticmethod 和 @classmethod 的 区别 和 使用场景

在上述例子中,我们可以看出,

区别

在定义静态类方法和类方法时,@staticmethod 装饰的静态方法里面,想要访问类属性或调用实例方法,必须需要把类名写上;

@classmethod装饰的类方法里面,会传一个cls参数,代表本类,这样就能够避免手写类名的硬编码。

在调用静态方法和类方法时,实际上写法都差不多,一般都是通过 类名.静态方法() 或 类名.类方法()。也可以用实例对象调用类方法和静态方法。 对象可以访问 实例方法、类方法、静态方法 , 类可以访问类方法、静态方法

也可以用实例化对象去调用静态方法和类方法但为了和实例方法区分,最好还是用类去调用静态方法和类方法。

使用场景

所以,在定义类的时候,

假如不需要用到与类相关的属性或方法时,就用静态方法@staticmethod

假如需要用到与类相关的属性或方法,然后又想表明这个方法是整个类通用的,而不是对象特异的,就可以使用类方法@classmethod

装饰器的顺序

@a
@b
@c
def f ():

等效于

f = a(b(c(f)))

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注