The NSynth Dataset

A large-scale and high-quality dataset of annotated musical notes.( 一个大规模、高质量的注释音符数据集。)

下载地址:https://magenta.tensorflow.org/datasets/nsynth#files

Motivation

Recent breakthroughs in generative modeling of images have been predicated on the availability of high-quality and large-scale datasebts such as MNIST, CIFAR and ImageNet. We recognized the need for an audio dataset that was as approachable as those in the image domain.

Audio signals found in the wild contain multi-scale dependencies that prove particularly difficult to model, leading many previous efforts at data-driven audio synthesis to focus on more constrained domains such as texture synthesis or training small parametric models.

We encourage the broader community to use NSynth as a benchmark and entry point into audio machine learning. We also view NSynth as a building block for future datasets and envision a high-quality multi-note dataset for tasks like generation and transcription that involve learning complex language-like dependencies.

Description

NSynth is an audio dataset containing 305,979 musical notes, each with a unique pitch, timbre, and envelope. For 1,006 instruments from commercial sample libraries, we generated four second, monophonic 16kHz audio snippets, referred to as notes, by ranging over every pitch of a standard MIDI pian o (21-108) as well as five different velocities (25, 50, 75, 100, 127). The note was held for the first three seconds and allowed to decay for the final second.

Some instruments are not capable of producing all 88 pitches in this range, resulting in an average of 65.4 pitches per instrument. Furthermore, the commercial sample packs occasionally contain duplicate sounds across multiple velocities, leaving an average of 4.75 unique velocities per pitch.

We also annotated each of the notes with three additional pieces of information based on a combination of human evaluation and heuristic algorithms:

  • Source: The method of sound production for the note’s instrument. This can be one of acoustic or electronic for instruments that were recorded from acoustic or electronic instruments, respectively, or synthetic for synthesized instruments. See their frequencies below.
  • Family: The high-level family of which the note’s instrument is a member. Each instrument is a member of exactly one family. See the complete list and their frequencies below.
  • Qualities: Sonic qualities of the note. See the quality descriptions and their co-occurrences below. Each note is annotated with zero or more qualities.

Format

Files

The NSynth dataset can be download in two formats:

The full dataset is split into three sets:

  • Train [tfrecord | json/wav]: A training set with 289,205 examples. Instruments do not overlap with valid or test.
  • Valid [tfrecord | json/wav]: A validation set with 12,678 examples. Instruments do not overlap with train.
  • Test [tfrecord | json/wav]: A test set with 4,096 examples. Instruments do not overlap with train.

Below we detail how the note features are encoded in the Example protocol buffers and JSON files.

Example Features

Each Example contains the following features.

FeatureTypeDescription
noteint64A unique integer identifier for the note.
note_strbytesA unique string identifier for the note in the format <instrument_str>-<pitch>-<velocity>.
instrumentint64A unique, sequential identifier for the instrument the note was synthesized from.
instrument_strbytesA unique string identifier for the instrument this note was synthesized from in the format <instrument_family_str>-<instrument_production_str>-<instrument_name>.
pitchint64The 0-based MIDI pitch in the range [0, 127].
velocityint64The 0-based MIDI velocity in the range [0, 127].
sample_rateint64The samples per second for the audio feature.
audio*[float]A list of audio samples represented as floating point values in the range [-1,1].
qualities[int64]A binary vector representing which sonic qualities are present in this note.
qualities_str[bytes]A list IDs of which qualities are present in this note selected from the sonic qualities list.
instrument_familyint64The index of the instrument family this instrument is a member of.
instrument_family_strbytesThe ID of the instrument family this instrument is a member of.
instrument_sourceint64The index of the sonic source for this instrument.
instrument_source_strbytesThe ID of the sonic source for this instrument.

Note: the “audio” feature is ommited from the JSON-encoded examples since the audio data is stored separately in WAV files keyed by the “note_str”.

Python程序入口 __name__ == ‘__main__’ 有重要功能(多线程)而非编程习惯

摘自:https://zhuanlan.zhihu.com/p/340965963

在Python中,被称为「程序的入口」的 if __name__ ==’__main__’: 总是出现在各种示例代码中,有一种流传广泛的错误观点是「这只是Python的一种编码习惯」。事实上程序的入口非常有用,绝非可有可无,例如在Python自带的多线程库要求必须把主进程写在 if入口内部才能正常运行。

直接写在Python最左端没有缩进的代码,在这个 *.py 文件被直接运行、或者被调用时会被执行,只有写在 if __name__ ==’__main__’: if入口内部才不会在被调用时执行。Python用这个简单的方法来判断当前的模块是被直接运行还是被调用,这是很重要的功能,如:

  • 我们可以把不想在被调用时执行的代码放在程序入口的if内部,比如自检程序。
  • 我们还把多线程的主线程写在程序入口的if内部。只能这么做,避免自己调用自己时重复执行主进程,下面会详细解释。

因此,初学Python时,直接把主程序写在不需要缩进的位置,完全不写 if __name__ ==’__main__’: 当然可以。一个既没有写一个被调用的库的能力,也不一定要学多进程的新手,很容易错误地认为「程序的入口」没什么用。

类似的,还有被少数人误解的还有 Python的文件头:

#!/bin/bash/python3  # 这一句话用来在代码被执行时,主动说明该选哪个路径下的编译器
#!/bin/bash/python2  # 例如这一句就选了Python2,不过2020年Python2快要完成过渡使命了

2020年底,我在写Python多进程教程时,没有搜索到合适的文章解释“程序的入口 if __name__ ==’__main__’: 与多线程的必要联系”,反而看到了很多高赞的片面回答。无奈之下只能自己写。对于少数有基础的人,下面讲程序入口与多线程部分也值得一看。

目录

  • 「程序的入口」是什么?
  • 程序入口与自检程序
  • 程序入口与多线程

更新日志

  • 第一版 2021-01-01 我会把评论区的好问题更新到正文里

「程序的入口」是什么?

用很短的话就能解释,我认可菜鸟分析↓的回答 ,部分高赞答案写得啰嗦

__name__ 是当前模块名,当模块被直接运行时模块名为 __main__ 。这句话的意思就是,当模块被直接运行时,以下代码块将被运行,当模块是被导入时,代码块不被运行。

举例说明:当我在终端直接运行 python3 run1.py时,模块名被一律改为字符串__main__,当模块是被另一个 *.py程序导入(如在 *.py 中 import run1)而不是直接运行时,模块名是字符串run1

在C语言和Java里也有类似的「程序入口」:

# Python的程序入口
if __name__ =='__main__': # 它对多进程非常重要
    # 这里是主程序

# C语言的程序入口
void main(){
    /* 这里是主程序 */
}

# Java的程序入口
public static void main(String[] args){
    // 这里是主程序
}

检验一下自己:下面的程序会print出什么东西?

# 新建一个名为【run1.py】的文件,填入下方代码
# 然后在终端输入【python3 run1.py】并运行

print(__name__, 'run1-outside')    # 它会print出【__main__ run1-outside】
if __name__ =='__main__':
    print(__name__, 'run1-inside') # 它会print出【__main__ run1-inside】

再检验一下自己:

# 新建另一个名为【run2.py】的文件,填入下方代码,并放在与【run1.py】的相同目录下,
# 然后在终端输入【python3 run2.py】并运行。用run2 调用run1

import run1  # 这一行代码调用了外部的代码 run1,它只会print出:
# 【run1 run1-outside】 # 它只print出这一行东西,并且run1.py的【__main__】变成了【run1】
# 【run1 run1-inside】  # 写在run1【if】缩进里的东西都没有被执行

print(__name__, 'run2-outside')    # 它会print出【__main__ run2-outside】
if __name__ =='__main__':
    print(__name__, 'run2-inside') # 它会print出【__main__ run2-inside】

程序入口与自检程序

当一个开发者编写一个库时(例如把它命名为 utils.py),如

# 这个库(模块)被命名为 utils.py
class C1:
   ...
def func1():
   ...

c1 = C1()  # 这是错误的做法,应该挪到 程序入口if内部
func1()    # 这是错误的做法,应该挪到 程序入口if内部
if __name__ =='__main__':
    c = C1()
    func1()

当其他人只想调用 C1 或者 func1时,他在另一个Python文件中,用 import utils 导入 utils这个库时就不会运行程序入口if内部的任何代码了。

程序入口与多线程

实现多线程时,「程序入口」这个功能不可或缺。我需要同时运行多个 fun1,或者同时运行 fun1 fun2 … 如下:

def function1(id):  # 这里是子进程
    print(f'id {id}')

def run__process():  # 这里是主进程
    from multiprocessing import Process
    process = [mp.Process(target=function1, args=(1,)),
               mp.Process(target=function1, args=(2,)), ]
    [p.start() for p in process]  # 开启了两个进程
    [p.join() for p in process]   # 等待两个进程依次结束

# run__mp()  # 主线程不建议写在 if外部。由于这里的例子很简单,你强行这么做可能不会报错
if __name__ =='__main__':
    run__mp()  # 正确做法:主线程只能写在 if内部

当我运行上面这个程序,它的【__name__ ==’__main__’】,因此它会执行 【if】内的代码。这些代码会创建新的多个子进程,自己调用自己。在被调用的子进程中,它的【__name__】 不等于【__main__】,因此它只会执行被主进程分配的任务(比如fun1),而不会像主进程一样通过「程序入口」再调用别的进程(行此僭越之事)。这是一个非常重要的功能,这里讲的不仅是Python,其他成熟的编程语言也能用相似的方法。

RuntimeError: context has already been set(multiprocessing) #3492 PyTorch Issue

尽管有很多人点踩,但是这个分析是正确的。点踩的可能是其他原因引发了错误
尽管forkserver 依然不如 spawn更节省资源,但能解决问题也算不错了

由于我上面的例子过于简单(没有涉及进程通信、进程退出条件),如果你强行把主进程写在 if外部,也可能不会看到报错。这涉及很多因素,它与你使用的系统、子进程的创建方式(spwan、fork、forkserver、force=True/False)有关。我在这里只讲「程序的入口」,更多内容请移步 Compulsory usage of if __name__==“__main__” in windows while using multiprocessing – Stack Overflow ,Tim Peters 与 David Heffernan 的回答都不错。

尽管Python的多进程已经做得挺不错了,希望随着以后版本的更新,多进程与「程序入口」的依赖关系应该能得到更好的解决。

使用PyTorch CUDA multiprocessing 的时候出现的错误 UserWarning: semaphore_tracker

(写于2021-03-03)

错误如下:

multiprocessing/semaphore_tracker.py:144: 
UserWarning: semaphore_tracker: There appear to be 1 leaked semaphores to clean up at shutdown
  len(cache))

Issue with multiprocessing semaphore tracking

相同问题描述:

semaphore_tracker: There appear to be 1 leaked semaphores to clean up at shutdown len(cache)) #200

解决方案:

Issue with multiprocessing semaphore tracking – sbelharbi 的解决方案

即在运行 .py 文件前,使用以下语句修改环境参数,忽略这个Warning 带来的程序暂停

export PYTHONWARNINGS='ignore:semaphore_tracker:UserWarning'

等同于在 .py 文件内部使用:

os.environ['PYTHONWARNINGS'] = 'ignore:semaphore_tracker:UserWarning'

在Python中优雅地用多进程

在Python中优雅地用多进程

摘自知乎:https://zhuanlan.zhihu.com/p/340657122

Python自带的多进程库 multiprocessing 可实现多进程。我想用这些短例子示范如何优雅地用多线程。中文网络上,有些人只是翻译了旧版的 Python官网的多进程文档。而我这篇文章会额外讲一讲下方加粗部分的内容。

  • 创建进程 Process,fork直接继承资源,所以初始化更快,spawn只继承必要的资源,所以更省内存,「程序的入口」 if name == main
  • 进程池 Pool,Pool只能接受一个参数,但有办法传入多个
  • 管道通信 Pipe,最基本的功能,运行速度快
  • 队列通信 Queue,有最常用的功能,运行速度稍慢
  • 共享内存 Manager Value,Python3.9 新特性 真正的共享内存 shared_memory

如下所示,中文网络上一些讲Python多进程的文章,很多重要的东西没讲(毕竟只是翻译了Python官网的多进程旧版文档)。上方的加粗部分他们没讲,但是这是做多进程总需要知道的内容。

目录(请挑选感兴趣的看,没必要全看)

  1. 多线程与多进程的区别
  2. 全局锁与多进程
  3. 子进程 Process
  4. 进程池 Pool
  5. 管道 Pipe
  6. 队列 Queue
  7. 共享内存 Manager
  8. 回答评论区的有用问题(别私信)
  9. 我为何写【在Python中优雅地用多进程】?

更新记录:第一版 2021-1-4,第二版 2021-1-8 被迫更新了一些私信问到的问题

1. 多线程与多进程的区别

多线程 threading: 一个人有与异性聊天和看剧两件事要做。单线程的她可以看完剧再去聊天,但这样子可能就没人陪她聊天了「哼,发消息不回」。我们把她看成一个CPU核心,为她开起多线程——先看一会剧,偶尔看看新消息,在两件事(线程)间来回切换。多线程:单个CPU核心可以同时做几件事,不至于卡在某一步傻等着。

用处:爬取网站信息(爬虫),等待多个用户输入

多进程 processing: 一个人有很多砖需要搬,他领取手套、推车各种物资(向系统申请了资源)然后开始搬砖。然而他身边有很多人,我们让这些人去帮他!(一核有难,八核围观)。于是他们做了分工,砖很快就搬完了。多进程让多个CPU核心可以一起做事,不至于只有一人干活而其他人傻站着。

用处:进行高性能计算。只有多进程方案设计合理,才能加速计算。

一核有难,七核围观

2. 全局锁与多进程

为何在Python里用多进程这么麻烦? 因为Python的线程是操作系统线程,因此要有Python全局解释器锁。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。——来自百度百科词条 全局解释器锁。发展历程:

  1. Python全局锁。Python 3.2的时候更新过GIL。在我小时候,由于Python GIL的存在(全局解释器锁 Global Interpreter Lock) ,此时Python无法靠自己实现多进程
  2. 外部多进程通信。Python3.5。在2015年,要么用Python调用C语言(如Numpy此类用其他语言在底层实现多进程的第三方库),要么需要在外部代码(MPI 2015)
  3. 内置多进程通信。Python 3.6 才让 multiprocessing逐渐发展成一个能用的Python内置多进程库,可以进行进程间的通信,以及有限的内存共享
  4. 共享内存。Python 3.8 在2019年增加了新特性 shared_memory

3. 子进程 Process

多进程的主进程一定要写在程序入口 if __name__ ==’__main__’: 内部

def function1(id):  # 这里是子进程
    print(f'id {id}')

def run__process():  # 这里是主进程
    from multiprocessing import Process
    process = [mp.Process(target=function1, args=(1,)),
               mp.Process(target=function1, args=(2,)), ]
    [p.start() for p in process]  # 开启了两个进程
    [p.join() for p in process]   # 等待两个进程依次结束

# run__process()  # 主线程不建议写在 if外部。由于这里的例子很简单,你强行这么做可能不会报错
if __name__ =='__main__':
    run__process()  # 正确做法:主线程只能写在 if内部

尽管在这个简单的例子里,把主进程run__process()写在程序入口if外部不会有报错。但是你最好还是按我要求去做。详细解释的内容过长,我写在→「Python程序入口有重要功能(多线程)而非编程习惯」

上面的例子只是用Process开启了多进程,不涉及进程通信。当我准备把一个串行任务编排成多进程时,我还需要多进程通信。进程池Pool可以让主程序获得子进程的计算结果(不太灵活,适合简单任务),管道Pipe 队列Queue 等等 可以让进程之间进行通信(足够灵活)。共享值 Value 共享数组 Array 共享内容 shared_memory(Python 3.6 Python3.9 的新特性,还不太成熟)下面开讲。

Python多进程可以选择两种创建进程的方式,spawn 与 fork。分支创建:fork会直接复制一份自己给子进程运行,并把自己所有资源的handle 都让子进程继承,因而创建速度很快,但更占用内存资源。分产创建:spawn只会把必要的资源的handle 交给子进程,因此创建速度稍慢。详细解释请看 Stack OverFlow multiprocessing fork vs spawn 。(分产spawn 是我自己随便翻译的,有更好的翻译请推荐。我绝不把handle 翻译成句柄)

multiprocessing.set_start_method('spawn')  # default on WinOS or MacOS
multiprocessing.set_start_method('fork')   # default on Linux (UnixOS)

请注意:我说 分支fork 在初始化创建多进程的时候比 分产spawn 快,而不是说高性能计算会比较快。通常高性能计算需要让程序运行很久,因此为了节省内存以及进程安全,我建议选择 spawn。

4. 进程池 Pool

几乎Python多进程代码都需要你明明白白地调用Process。而进程池Pool 会自动帮我们管理子进程。Python的Pool 不方便传入多个参数,我这里提供两个解决思路:

思路1:函数 func2 需要传入多个参数,现在把它改成一个参数,无论你直接让args作为一个元组tuple、词典dict、类class都可以

思路2:使用 function.partial Passing multiple parameters to pool.map() function in Python。这个不灵活的方法固定了其他参数,且需要导入Python的内置库,我不推荐

import time

def func2(args):  # multiple parameters (arguments)
    # x, y = args
    x = args[0]  # write in this way, easier to locate errors
    y = args[1]  # write in this way, easier to locate errors

    time.sleep(1)  # pretend it is a time-consuming operation
    return x - y


def run__pool():  # main process
    from multiprocessing import Pool

    cpu_worker_num = 3
    process_args = [(1, 1), (9, 9), (4, 4), (3, 3), ]

    print(f'| inputs:  {process_args}')
    start_time = time.time()
    with Pool(cpu_worker_num) as p:
        outputs = p.map(func2, process_args)
    print(f'| outputs: {outputs}    TimeUsed: {time.time() - start_time:.1f}    \n')

    '''Another way (I don't recommend)
    Using 'functions.partial'. See https://stackoverflow.com/a/25553970/9293137
    from functools import partial
    # from functools import partial
    # pool.map(partial(f, a, b), iterable)
    '''

if __name__ =='__main__':
    run__pool()

5. 管道 Pipe

顾名思义,管道Pipe 有两端,因而 main_conn, child_conn = Pipe() ,管道的两端可以放在主进程或子进程内,我在实验中没发现主管道口main_conn 和子管道口child_conn 的区别。两端可以同时放进去东西,放进去的对象都经过了深拷贝:用 conn.send()在一端放入,用 conn.recv() 另一端取出,管道的两端可以同时给多个进程。conn是 connect的缩写。

import time

def func_pipe1(conn, p_id):
    print(p_id)

    time.sleep(0.1)
    conn.send(f'{p_id}_send1')
    print(p_id, 'send1')

    time.sleep(0.1)
    conn.send(f'{p_id}_send2')
    print(p_id, 'send2')

    time.sleep(0.1)
    rec = conn.recv()
    print(p_id, 'recv', rec)

    time.sleep(0.1)
    rec = conn.recv()
    print(p_id, 'recv', rec)


def func_pipe2(conn, p_id):
    print(p_id)

    time.sleep(0.1)
    conn.send(p_id)
    print(p_id, 'send')
    time.sleep(0.1)
    rec = conn.recv()
    print(p_id, 'recv', rec)


def run__pipe():
    from multiprocessing import Process, Pipe

    conn1, conn2 = Pipe()

    process = [Process(target=func_pipe1, args=(conn1, 'I1')),
               Process(target=func_pipe2, args=(conn2, 'I2')),
               Process(target=func_pipe2, args=(conn2, 'I3')), ]

    [p.start() for p in process]
    print('| Main', 'send')
    conn1.send(None)
    print('| Main', conn2.recv())
    [p.join() for p in process]

if __name__ =='__main__':
    run__pipe()

如果追求运行更快,那么最好使用管道Pipe而非下面介绍的队列Queue,详细请移步Python pipes and queues performance ↓

So yes, pipes are faster than queues – but only by 1.5 to 2 times, what did surprise me was that Python 3 is MUCH slower than Python 2 – most other tests I have done have been a bit up and down (as long as it is Python 3.4 – Python 3.2 seems to be a bit of a dog – especially for memory usage).

我小时候曾经用到Python多线程队列功能写过一个实际例子 ↓,若追求极致性能,还可以把里面的Queue改为Pipe。读取多个(海康\大华)网络摄像头的视频流 (使用opencv-python),解决实时读取延迟问题392 赞同 · 281 评论文章

Pipe还有 duplex参数 和 poll() 方法 需要了解。默认情况下 duplex==True,若不开启双向管道,那么传数据的方向只能 conn1 ← conn2 。conn2.poll()==True 意味着可以马上使用 conn2.recv() 拿到传过来的数据。conn2.poll(n) 会让它等待n秒钟再进行查询。

from multiprocessing import Pipe

conn1, conn2 = Pipe(duplex=True)  # 开启双向管道,管道两端都能存取数据。默认开启
# 
conn1.send('A')
print(conn1.poll())  # 会print出 False,因为没有东西等待conn1去接收
print(conn2.poll())  # 会print出 True ,因为conn1 send 了个 'A' 等着conn2 去接收
print(conn2.recv(), conn2.poll(2))  # 会等待2秒钟再开始查询,然后print出 'A False'

尽管我下面的例子不会报错,但这是因为它过于简单,没有真的开多线程去跑,也没有写在程序入口的if内部。很多时候 Pipe运行会快一点,但是它的功能太少了,得用 Queue。最明显的一个区别是:

conn1, conn2 = multiprocessing.Pipe()  # 管道有两端,某一端放入的东西,只能在另一端拿到
queue = multiprocessing.Queue()        # 队列只有一个,放进去的东西可以在任何地方拿到。

6. 队列 Queue

可以 import queue 调用Python内置的队列,在多线程里也有队列 from multiprocessing import Queue。下面提及的都是多线程的队列。

队列Queue 的功能与前面的管道Pipe非常相似:无论主进程或子进程,都能访问到队列,放进去的对象都经过了深拷贝。不同的是:管道Pipe只有两个断开,而队列Queue 有基本的队列属性,更加灵活,详细请移步Stack Overflow Multiprocessing – Pipe vs Queue

def func1(i):
    time.sleep(1)
    print(f'args {i}')

def run__queue():
    from multiprocessing import Process, Queue

    queue = Queue(maxsize=4)  # the following attribute can call in anywhere
    queue.put(True)
    queue.put([0, None, object])  # you can put deepcopy thing
    queue.qsize()  # the length of queue
    print(queue.get())  # First In First Out
    print(queue.get())  # First In First Out
    queue.qsize()  # the length of queue

    process = [Process(target=func1, args=(queue,)),
               Process(target=func1, args=(queue,)), ]
    [p.start() for p in process]
    [p.join() for p in process]

if __name__ =='__main__':
    run__queue()

除了上面提及的 Python多线程,读取多个(海康\大华)网络摄像头的视频流 ,我自己写的开源的强化学习库:小雅 ElegantRL 也使用了 Queue 进行多CPU多GPU训练,为了提速,我已经把Queue 改为 Pipe。

7. 共享内存 Manager

为了在Python里面实现多进程通信,上面提及的 Pipe Queue 把需要通信的信息从内存里深拷贝了一份给其他线程使用(需要分发的线程越多,其占用的内存越多)。而共享内存会由解释器负责维护一块共享内存(而不用深拷贝),这块内存每个进程都能读取到,读写的时候遵守管理(因此不要以为用了共享内存就一定变快)。

Manager可以创建一块共享的内存区域,但是存入其中的数据需要按照特定的格式,Value可以保存数值,Array可以保存数组,如下。这里不推荐认为自己写代码能力弱的人尝试。下面这里例子来自Python官网的Document

# https://docs.python.org/3/library/multiprocessing.html?highlight=multiprocessing%20array#multiprocessing.Array

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
    _fields_ = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):
    n.value **= 2
    x.value **= 2
    s.value = s.value.upper()
    for a in A:
        a.x **= 2
        a.y **= 2

if __name__ == '__main__':
    lock = Lock()

    n = Value('i', 7)
    x = Value(c_double, 1.0/3.0, lock=False)
    s = Array('c', b'hello world', lock=lock)
    A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

    p = Process(target=modify, args=(n, x, s, A))
    p.start()
    p.join()

    print(n.value)
    print(x.value)
    print(s.value)
    print([(a.x, a.y) for a in A])

我删掉了Python 3.8 的shared_momery 介绍,这部分有Bug

下文来自 Stack Overflow,问题 Shared memory in multiprocessing 下thuzhf 的回答 2021-01 :

For those interested in using Python3.8 ‘s shared_memory module, it still has a bug which hasn’t been fixed and is affecting Python3.8/3.9/3.10 by now (2021-01-15). The bug is about resource tracker destroys shared memory segments when other processes should still have valid access. So take care if you use it in your code.

PyTorch 也有自带的多进程 torch.multiprocessing

How to share a list of tensors in PyTorch multiprocessing? rozyang 的回答 ,非常简单,核心代码如下:

import torch.multiprocessing as mp
tensor.share_memory_()

8. 回答评论区的有用问题(不建议私信)

正文已经结束,我把部分multiprocessing的代码都放在github。希望大家能写出让自己满意的多线程。我设计高性能的多进程时,会遵守以下规则:

  • 尽可能少传一点数据
  • 尽可能减少主线程的负担
  • 尽可能不让某个进程傻等着
  • 尽可能减少进程间通信的频率

9. 我为何写【在Python中优雅地用多进程】?

开源的深度强化学习(DRL)算法库 伯克利的Ray-project Rllib训练快,但太复杂,OpenAI的 SpinningUp简单,但不快(没有提及的开源库比不上它们,写于2020年)。刚好我又懂一点多进程、Numpy、深度学习框架、深度强化学习这些双层优化算法,所以我觉得自己也写一个DRL库难度不大,于是开源了强化学习库:小雅 ElegantRL。让别人好好看看,DRL库挺简单的一个东西弄那么复杂做什么?

尽管这个库会一直保持框架小巧、代码优雅来方便入门深度强化学习的人,但 ElegantRL 却把训练效率放在首位(正因如此,ElegantRL 与 SpinningUp的定位不同),所以我需要用Python的多进程来加速 DRL的训练。因而顺便写【在Python中优雅地用多进程】这篇东西。

Python 中 -m 参数的用法

在命令行中使用 Python 时,它可以接收大约 20 个选项(option),语法格式如下:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | - ] [args]

用“–help”来看看它的解释:

-m mod run library module as a script (terminates option list)

“mod”是“module”的缩写,即“-m”选项后面的内容是 module(模块),其作用是把模块当成脚本来运行。

“terminates option list”意味着“-m”之后的其它选项不起作用,在这点上它跟“-c”是一样的,都是“终极选项”。官方把它们定义为“接口选项”(Interface options),需要区别于其它的普通选项或通用选项。

m 选项的五个典型用法

Python 中有很多使用 -m 选项的场景,相信大家可能会用到或者看见过,我在这里想分享 5 个。

在 Python3 中,只需一行命令就能实现一个简单的 HTTP 服务:

python -m http.server 8000

# 注:在 Python2 中是这样
python -m SimpleHTTPServer 8000复制代码

执行后,在本机打开“http://localhost:8000”,或者在局域网内的其它机器上打开“http://本机ip:8000”,就能访问到执行目录下的内容,例如下图就是我本机的内容:

与此类似,我们只需要一行命令“python -m pydoc -p xxx”,就能生成 HTML 格式的官方帮助文档,可以在浏览器中访问。

上面的命令执行了 pydoc 模块,会在 9000 端口启动一个 http 服务,在浏览器中打开,我的结果如下:

它的第三个常见用法是执行 pdb 的调试命令“python -m pdb xxx.py”,以调试模式来执行“xxx.py”脚本:

第四个同样挺有用的场景是用 timeit 在命令行中测试一小段代码的运行时间。以下的 3 段代码,用不同的方式拼接 “0-1-2-……-99” 数字串。可以直观地看出它们的效率差异:

最后,还有一种常常被人忽略的场景:“python -m pip install xxx”。我们可能会习惯性地使用“pip install xxx”,或者做了版本区分时用“pip3 install xxx”,总之不在前面用“python -m”做指定。但这种写法可能会出问题。

很巧合的是,在本月初(2019.11.01),Python 的核心开发者、第一届指导委员会 五人成员之一的 Brett Cannon 专门写了一篇博客《Why you should use “python -m pip” 》,提出应该使用“python -m pip”的方式,并做了详细的解释。

他的主要观点是:在存在多个 Python 版本的环境中,这种写法可以精确地控制三方库的安装位置。例如用“python3.8 -m pip”,可以明确指定给 3.8 版本安装,而不会混淆成其它的版本。

-m 选项的两种原理解析

看了前面的几种典型用法,你是否开始好奇:“-m”是怎么运作的?它是怎么实现的?

对于“python -m name”,一句话解释:Python 会检索sys.path ,查找名字为“name”的模块或者包(含命名空间包),并将其内容当成“__main__”模块来执行。

1、对于普通模块

以“.py”为后缀的文件就是一个模块,在“-m”之后使用时,只需要使用模块名,不需要写出后缀,但前提是该模块名是有效的,且不能是用 C 语言写成的模块。

在“-m”之后,如果是一个无效的模块名,则会报错“No module named xxx”。

如果是一个带后缀的模块,则首先会导入该模块,然后可能报错:Error while finding module specification for ‘xxx.py’ (AttributeError: module ‘xxx’ has no attribute ‘__path__’。

对于一个普通模块,有时候这两种写法表面看起来是等效的:

两种写法都会把定位到的模块脚本当成主程序入口来执行,即在执行时,该脚本的__name__ 都是”__main__“,跟 import 导入方式是不同的。

但它的前提是:在执行目录中存在着“test.py”,且只有唯一的“test”模块。对于本例,如果换一个目录执行的话,“python test.py”当然会报找不到文件的错误,然而,“python -m test”却不会报错,因为解释器在遍历sys.path 时可以找到同名的“test”模块,并且执行:

由此差异,我们其实可以总结出“-m”的用法:已知一个模块的名字,但不知道它的文件路径,那么使用“-m”就意味着交给解释器自行查找,若找到,则当成脚本执行。

以前文的“python -m http.server 8000”为例,我们也可以找到“server”模块的绝对路径,然后执行,尽管这样会变得很麻烦。

那么,“-m”方式与直接运行脚本相比,在实现上有什么不同呢?

  • 直接运行脚本时,相当于给出了脚本的完整路径(不管是绝对路径还是相对路径),解释器根据文件系统的查找机制, 定位到该脚本,然后执行
  • 使用“-m”方式时,解释器需要在不 import 的情况下,在所有模块命名空间 中查找,定位到脚本的路径,然后执行。为了实现这个过程,解释器会借助两个模块:pkgutil 和 runpy ,前者用来获取所有的模块列表,后者根据模块名来定位并执行脚本

2、对于包内模块

如果“-m”之后要执行的是一个包,那么解释器经过前面提到的查找过程,先定位到该包,然后会去执行它的“__main__”子模块,也就是说,在包目录下需要实现一个“__main__.py”文件。

换句话说,假设有个包的名称是“pname”,那么,“python -m pname”,其实就等效于“python -m pname.__main__”。

仍以前文创建 HTTP 服务为例,“http”是 Python 内置的一个包,它没有“__main__.py”文件,所以使用“-m”方式执行时,就会报错:No module named http.__main__; ‘http’ is a package and cannot be directly executed。

作为对比,我们可以看看前文提到的 pip,它也是一个包,为什么“python -m pip”的方式可以使用呢?当然是因为它有“__main__.py”文件:

“python -m pip”实际上执行的就是这个“__main__.py”文件,它主要作为一个调用入口,调用了核心的”pip._internal.main”。

http 包因为没有一个统一的入口模块,所以采用了“python -m 包.模块”的方式,而 pip 包因为有统一的入口模块,所以加了一个“__main__.py”文件,最后只需要写“python -m 包”,简明直观。

python 设置断点–调试利器 pdb

如果你还主要靠print来调试代码,那值得花10分钟试试pdb这个Python自带的Debug工具。

pdb有2种用法:

  • 非侵入式方法(不用额外修改源代码,在命令行下直接运行就能调试)
python3 -m pdb filename.py
  • 侵入式方法(需要在被调试的代码中添加一行代码然后再正常运行代码)
import pdb;pdb.set_trace()

当你在命令行看到下面这个提示符时,说明已经正确打开了pdb

(Pdb) 

然后就可以开始输入pdb命令了,下面是pdb的常用命令

1、查看源代码

命令:

l

说明:

查看当前位置前后11行源代码(多次会翻页)
当前位置在代码中会用–>这个符号标出来

命令:

ll

说明:

查看当前函数或框架的所有源代码

2、添加断点

命令:

b
b lineno
b filename:lineno 
b functionname

参数:

filename文件名,断点添加到哪个文件,如test.py
lineno断点添加到哪一行
function:函数名,在该函数执行的第一行设置断点

说明:

1.不带参数表示查看断点设置
2.带参则在指定位置设置一个断点

3、添加临时断点

命令:

tbreak
tbreak lineno
tbreak filename:lineno
tbreak functionname

参数:

同b

说明:

执行一次后时自动删除(这就是它被称为临时断点的原因)

4、清除断点

命令:

cl
cl filename:lineno
cl bpnumber [bpnumber ...]

参数:

bpnumber 断点序号(多个以空格分隔)

说明:

1.不带参数用于清除所有断点,会提示确认(包括临时断点)
2.带参数则清除指定文件行或当前文件指定序号的断点

5、打印变量值

命令:

p expression

参数:

expression Python表达式

6、逐行调试命令

包括 s ,n , r 这3个相似的命令,区别在如何对待函数上

命令1:

s

说明:

执行下一行(能够进入函数体)

命令2:

n 

说明:

执行下一行(不会进入函数体)

命令3:

r 

说明:

执行下一行(在函数中时会直接执行到函数返回处)

7、非逐行调试命令

命令1:

c 

说明:

持续执行下去,直到遇到一个断点

命令2

unt lineno

说明:

持续执行直到运行到指定行(或遇到断点)

命令3

j lineno

说明:

直接跳转到指定行(注意,被跳过的代码不执行)

8、查看函数参数

命令:

a

说明:

在函数中时打印函数的参数和参数的值

9、打印变量类型

命令:

whatis expression

说明:

打印表达式的类型,常用来打印变量值

10、启动交互式解释器

interact

说明:

启动一个python的交互式解释器,使用当前代码的全局命名空间(使用ctrl+d返回pdb)

11、打印堆栈信息

w

说明:

打印堆栈信息,最新的帧在最底部。箭头表示当前帧。

12、退出pdb

q

PYTHON — 多进程和多线程

进程与线程的概念,以及为什么要有进程线程,其中有什么区别?

1. 基本概念:

进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发

线程是进程的子任务,是CPU调度和分派的基本单位用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源

2. 区别:
  1. 一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。
  2. 进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。)
  3. 进程是资源分配的最小单位,线程是CPU调度的最小单位
  4. 系统开销: 由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显着地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销
  5. 通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预
  6. 进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂
  7. 进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉
  8. 进程适应于多核、多机分布;线程适用于多核

进程与线程的一个简单解释:

计算机的核心是CPU,它承担了所有的计算任务。它就像一座工厂,时刻在运行。假定工厂的电力有限,一次只能供给一个车间使用。也就是说,一个车间开工的时候,其他车间都必须停工。背后的含义就是,单个CPU一次只能运行一个任务。进程就好比工厂的车间,它代表CPU所能处理的单个任务。任一时刻,CPU总是运行一个进程,其他进程处于非运行状态。

一个车间里,可以有很多工人。他们协同完成一个任务。线程就好比车间里的工人。一个进程可以包括多个线程。

车间的空间是工人们共享的,比如许多房间是每个工人都可以进出的。这象征一个进程的内存空间是共享的,每个线程都可以使用这些共享内存。可是,每间房间的大小不同,有些房间最多只能容纳一个人,比如厕所。里面有人的时候,其他人就不能进去了。这代表一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。

一个防止他人进入的简单方法,就是门口加一把锁。先到的人锁上门,后到的人看到上锁,就在门口排队,等锁打开再进去。这就叫“互斥锁”(Mutual exclusion,缩写 Mutex),防止多个线程同时读写某一块内存区域。

还有些房间,可以同时容纳n个人,比如厨房。也就是说,如果人数大于n,多出来的人只能在外面等着。这好比某些内存区域,只能供给固定数目的线程使用。

这时的解决方法,就是在门口挂n把钥匙。进去的人就取一把钥匙,出来时再把钥匙挂回原处。后到的人发现钥匙架空了,就知道必须在门口排队等着了。这种做法叫做“信号量”(Semaphore),用来保证多个线程不会互相冲突。

不难看出,mutex是semaphore的一种特殊情况(n=1时)。也就是说,完全可以用后者替代前者。但是,因为mutex较为简单,且效率高,所以在必须保证资源独占的情况下,还是采用这种设计。

操作系统的设计,因此可以归结为三点:

(1)以多进程形式,允许多个任务同时运行;

(2)以多线程形式,允许单个任务分成不同的部分运行;

(3)提供协调机制,一方面防止进程之间和线程之间产生冲突,另一方面允许进程之间和线程之间共享资源。

Python中的进程和线程:

python中的的multiprocess和threading模块用于进行多线程和多进程编程。

Python的多进程编程与multiprocess模块

python的多进程编程主要依靠multiprocess模块。我们先对比两段代码,看看多进程编程的优势。我们模拟了一个非常耗时的任务,计算8的20次方,为了使这个任务显得更耗时,我们还让它sleep 2秒。第一段代码是单进程计算(代码如下所示),我们按顺序执行代码,重复计算2次,并打印出总共耗时。

import time
import os

def long_time_task():
    print('当前进程: {}'.format(os.getpid()))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))

if __name__ == "__main__":
    print('当前母进程: {}'.format(os.getpid()))
    start = time.time()
    for i in range(2):
        long_time_task()

    end = time.time()
    print("用时{}秒".format((end-start)))

输出结果如下,总共耗时4秒,至始至终只有一个进程14236。看来电脑计算8的20次方基本不费时。

当前母进程: 14236
当前进程: 14236
结果: 1152921504606846976
当前进程: 14236
结果: 1152921504606846976
用时4.01080060005188秒

第2段代码是多进程计算代码。我们利用multiprocess模块的Process方法创建了两个新的进程p1和p2来进行并行计算。Process方法接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新进程,调用start()方法即可让其开始。我们可以使用os.getpid()打印出当前进程的名字。

from multiprocessing import Process
import os
import time


def long_time_task(i):
    print('子进程: {} - 任务{}'.format(os.getpid(), i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))


if __name__=='__main__':
    print('当前母进程: {}'.format(os.getpid()))
    start = time.time()
    p1 = Process(target=long_time_task, args=(1,))
    p2 = Process(target=long_time_task, args=(2,))
    print('等待所有子进程完成。')
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    end = time.time()
    print("总共用时{}秒".format((end - start)))

输出结果如下所示,耗时变为2秒,时间减了一半,可见并发执行的时间明显比顺序执行要快很多。你还可以看到尽管我们只创建了两个进程,可实际运行中却包含里1个母进程和2个子进程。之所以我们使用join()方法就是为了让母进程阻塞,等待子进程都完成后才打印出总共耗时,否则输出时间只是母进程执行的时间。

当前母进程: 6920
等待所有子进程完成。
子进程: 17020 - 任务1
子进程: 5904 - 任务2
结果: 1152921504606846976
结果: 1152921504606846976
总共用时2.131091356277466秒

知识点:

  • 新创建的进程与进程的切换都是要耗资源的,所以平时工作中进程数不能开太大。
  • 同时可以运行的进程数一般受制于CPU的核数。
  • 除了使用Process方法,我们还可以使用Pool类创建多进程。

利用multiprocess模块的Pool类创建多进程

很多时候系统都需要创建多个进程以提高CPU的利用率,当数量较少时,可以手动生成一个个Process实例。当进程数量很多时,或许可以利用循环,但是这需要程序员手动管理系统中并发进程的数量,有时会很麻烦。这时进程池Pool就可以发挥其功效了。可以通过传递参数限制并发进程的数量,默认值为CPU的核数。

Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果进程池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。

下面介绍一下multiprocessing 模块下的Pool类的几个方法:

1.apply_async

函数原型:apply_async(func[, args=()[, kwds={}[, callback=None]]])

其作用是向进程池提交需要执行的函数及参数, 各个进程采用非阻塞(异步)的调用方式,即每个子进程只管运行自己的,不管其它进程是否已经完成。这是默认方式。

2.map()

函数原型:map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到结果返回。 注意:虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

3.map_async()

函数原型:map_async(func, iterable[, chunksize[, callback]])
与map用法一致,但是它是非阻塞的。其有关事项见apply_async。

4.close()

关闭进程池(pool),使其不在接受新的任务。

5. terminate()

结束工作进程,不在处理未处理的任务。

6.join()

主进程阻塞等待子进程的退出, join方法要在close或terminate之后使用。

下例是一个简单的multiprocessing.Pool类的实例。因为小编我的CPU是4核的,一次最多可以同时运行4个进程,所以我开启了一个容量为4的进程池。4个进程需要计算5次,你可以想象4个进程并行4次计算任务后,还剩一次计算任务(任务4)没有完成,系统会等待4个进程完成后重新安排一个进程来计算。

from multiprocessing import Pool, cpu_count
import os
import time


def long_time_task(i):
    print('子进程: {} - 任务{}'.format(os.getpid(), i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))


if __name__=='__main__':
    print("CPU内核数:{}".format(cpu_count()))
    print('当前母进程: {}'.format(os.getpid()))
    start = time.time()
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('等待所有子进程完成。')
    p.close()
    p.join()
    end = time.time()
    print("总共用时{}秒".format((end - start)))

知识点:

  • 对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close()或terminate()方法,让其不再接受新的Process了。

输出结果如下所示,5个任务(每个任务大约耗时2秒)使用多进程并行计算只需4.37秒,, 耗时减少了60%,可见并行计算优势还是很明显的。

CPU内核数:4
当前母进程: 2556
等待所有子进程完成。
子进程: 16480 - 任务0
子进程: 15216 - 任务1
子进程: 15764 - 任务2
子进程: 10176 - 任务3
结果: 1152921504606846976
结果: 1152921504606846976
子进程: 15216 - 任务4
结果: 1152921504606846976
结果: 1152921504606846976
结果: 1152921504606846976
总共用时4.377134561538696秒

相信大家都知道python解释器中存在GIL(全局解释器锁), 它的作用就是保证同一时刻只有一个线程可以执行代码。由于GIL的存在,很多人认为python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。然而这并意味着python多线程编程没有意义哦,请继续阅读下文。

多进程间的数据共享与通信

通常,进程之间是相互独立的,每个进程都有独立的内存。通过共享内存(nmap模块),进程之间可以共享对象,使多个进程可以访问同一个变量(地址相同,变量名可能不同)。多进程共享资源必然会导致进程间相互竞争,所以应该尽最大可能防止使用共享状态。还有一种方式就是使用队列queue来实现不同进程间的通信或数据共享,这一点和多线程编程类似。

下例这段代码中中创建了2个独立进程,一个负责写(pw), 一个负责读(pr), 实现了共享一个队列queue。

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    print('Process to write: {}'.format(os.getpid()))
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    print('Process to read:{}'.format(os.getpid()))
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

输出结果如下所示:

Process to write: 3036
Put A to queue...
Process to read:9408
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.

python中的多线程(伪多线程):

我们知道 Python 之所以灵活和强大,是因为它是一个解释性语言,边解释边执行,实现这种特性的标准实现叫作 CPython。

它分两步来运行 Python 程序:

  • 首先解析源代码文本,并将其编译为字节码(bytecode)[1]
  • 然后采用基于栈的解释器来运行字节码
  • 不断循环这个过程,直到程序结束或者被终止

灵活性有了,但是为了保证程序执行的稳定性,也付出了巨大的代价:

引入了 全局解释器锁 GIL(global interpreter lock)[2]

以保证同一时间只有一个字节码在运行,这样就不会因为没用事先编译,而引发资源争夺和状态混乱的问题了。

看似 “十全十美” ,但,这样做,就意味着多线程执行时,会被 GIL 变为单线程,无法充分利用硬件资源。

戴着镣铐跳舞

难道 Python 里的多线程真的没用吗?

其实也并不是,虽然了因为 GIL,无法实现真正意义上的多线程,但,多线程机制,还是为我们提供了两个重要的特性。

一:多线程写法可以让某些程序更好写

怎么理解呢?

如果要解决一个需要同时维护多种状态的程序,用单线程是实现是很困难的。

比如要检索一个文本文件中的数据,为了提高检索效率,可以将文件分成小段的来处理,最先在那段中找到了,就结束处理过程。

用单线程的话,很难实现同时兼顾多个分段的情况,只能顺序,或者用二分法执行检索任务。

而采用多线程,可以将每个分段交给每个线程,会轮流执行,相当于同时推荐检索任务,处理起来,效率会比顺序查找大大提高。

二:处理阻塞型 I/O 任务效率更高

阻塞型 I/O 的意思是,当系统需要与文件系统(也包括网络和终端显示)交互时,由于文件系统相比于 CPU 的处理速度慢得多,所以程序会被设置为阻塞状态,即,不再被分配计算资源。

直到文件系统的结果返回,才会被激活,将有机会再次被分配计算资源。

也就是说,处于阻塞状态的程序,会一直等着。

那么如果一个程序是需要不断地从文件系统读取数据,处理后在写入,单线程的话就需要等等读取后,才能处理,等待处理完才能写入,于是处理过程就成了一个个的等待。

而用多线程,当一个处理过程被阻塞之后,就会立即被 GIL 切走,将计算资源分配给其他可以执行的过程,从而提示执行效率。

有了这两个特性,就说明 Python 的多线程并非一无是处,如果能根据情况编写好,效率会大大提高,只不过对于计算密集型的任务,多线程特性爱莫能助。

自强不息

了解到 Python 多线程的问题和解决方案,对于钟爱 Python 的我们,何去何从呢?

有句话用在这里很合适:

求人不如求己

哪怕再怎么厉害的工具或者武器,都无法解决所有的问题,而问题之所以能被解决,主要是因为我们的主观能动性。

对情况进行分析判断,选择合适的解决方案,不就是需要我们做的么?

对于 Python 中 多线程的诟病,我们更多的是看到它阳光和美的一面,而对于需要提升速度的地方,采取合适的方式。这里简单总结一下:

  1. I/O 密集型的任务,采用 Python 的多线程完全没用问题,可以大幅度提高执行效率
  2. 对于计算密集型任务,要看数据依赖性是否低,如果低,采用 ProcessPoolExecutor 代替多线程处理,可以充分利用硬件资源
  3. 如果数据依赖性高,可以考虑将关键的地方该用 C 来实现,一方面 C 本身比 Python 更快,另一方面,C 可以之间使用更底层的多线程机制,而完全不用担心受 GIL 的影响
  4. 大部分情况下,对于只能用多线程处理的任务,不用太多考虑,之间利用 Python 的多线程机制就好了,不用考虑太多

Python的多线程编程与threading模块

python 3中的多进程编程主要依靠threading模块。创建新线程与创建新进程的方法非常类似。threading.Thread方法可以接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新线程,调用start()方法即可让其开始。我们还可以使用current_thread().name打印出当前线程的名字。 下例中我们使用多线程技术重构之前的计算代码。

import threading
import time


def long_time_task(i):
    print('当前子线程: {} - 任务{}'.format(threading.current_thread().name, i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))


if __name__=='__main__':
    start = time.time()
    print('这是主线程:{}'.format(threading.current_thread().name))
    t1 = threading.Thread(target=long_time_task, args=(1,))
    t2 = threading.Thread(target=long_time_task, args=(2,))
    t1.start()
    t2.start()

    end = time.time()
    print("总共用时{}秒".format((end - start)))

下面是输出结果。为什么总耗时居然是0秒? 我们可以明显看到主线程和子线程其实是独立运行的,主线程根本没有等子线程完成,而是自己结束后就打印了消耗时间。主线程结束后,子线程仍在独立运行,这显然不是我们想要的。

这是主线程:MainThread
当前子线程: Thread-1 - 任务1
当前子线程: Thread-2 - 任务2
总共用时0.0017192363739013672秒
结果: 1152921504606846976
结果: 1152921504606846976

如果要实现主线程和子线程的同步,我们必需使用join方法(代码如下所示)。

import threading
import time


def long_time_task(i):
    print('当前子线程: {} 任务{}'.format(threading.current_thread().name, i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))


if __name__=='__main__':
    start = time.time()
    print('这是主线程:{}'.format(threading.current_thread().name))
    thread_list = []
    for i in range(1, 3):
        t = threading.Thread(target=long_time_task, args=(i, ))
        thread_list.append(t)

    for t in thread_list:
        t.start()

    for t in thread_list:
        t.join()

    end = time.time()
    print("总共用时{}秒".format((end - start)))

修改代码后的输出如下所示。这时你可以看到主线程在等子线程完成后才答应出总消耗时间(2秒),比正常顺序执行代码(4秒)还是节省了不少时间。

这是主线程:MainThread
当前子线程: Thread - 1 任务1
当前子线程: Thread - 2 任务2
结果: 1152921504606846976
结果: 1152921504606846976
总共用时2.0166890621185303秒

当我们设置多线程时,主线程会创建多个子线程,在python中,默认情况下主线程和子线程独立运行互不干涉。如果希望让主线程等待子线程实现线程的同步,我们需要使用join()方法。如果我们希望一个主线程结束时不再执行子线程,我们应该怎么办呢? 我们可以使用t.setDaemon(True),代码如下所示。

import threading
import time


def long_time_task():
    print('当子线程: {}'.format(threading.current_thread().name))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))


if __name__=='__main__':
    start = time.time()
    print('这是主线程:{}'.format(threading.current_thread().name))
    for i in range(5):
        t = threading.Thread(target=long_time_task, args=())
        t.setDaemon(True)
        t.start()

    end = time.time()
    print("总共用时{}秒".format((end - start)))

通过继承Thread类重写run方法创建新进程

除了使用Thread()方法创建新的线程外,我们还可以通过继承Thread类重写run方法创建新的线程,这种方法更灵活。下例中我们自定义的类为MyThread, 随后我们通过该类的实例化创建了2个子线程。

#-*- encoding:utf-8 -*-
import threading
import time


def long_time_task(i):
    time.sleep(2)
    return 8**20


class MyThread(threading.Thread):
    def __init__(self, func, args , name='', ):
        threading.Thread.__init__(self)
        self.func = func
        self.args = args
        self.name = name
        self.result = None

    def run(self):
        print('开始子进程{}'.format(self.name))
        self.result = self.func(self.args[0],)
        print("结果: {}".format(self.result))
        print('结束子进程{}'.format(self.name))


if __name__=='__main__':
    start = time.time()
    threads = []
    for i in range(1, 3):
        t = MyThread(long_time_task, (i,), str(i))
        threads.append(t)

    for t in threads:
        t.start()
    for t in threads:
        t.join()

    end = time.time()
    print("总共用时{}秒".format((end - start)))

输出结果如下所示:

开始子进程1
开始子进程2
结果: 1152921504606846976
结果: 1152921504606846976
结束子进程1
结束子进程2
总共用时2.005445718765259秒

不同线程间的数据共享

一个进程所含的不同线程间共享内存,这就意味着任何一个变量都可以被任何一个线程修改,因此线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。如果不同线程间有共享的变量,其中一个方法就是在修改前给其上一把锁lock,确保一次只有一个线程能修改它。threading.lock()方法可以轻易实现对一个共享变量的锁定,修改完后release供其它线程使用。比如下例中账户余额balance是一个共享变量,使用lock可以使其不被改乱。

# -*- coding: utf-8 -*

import threading


class Account:
    def __init__(self):
        self.balance = 0

    def add(self, lock):
        # 获得锁
        lock.acquire()
        for i in range(0, 100000):
            self.balance += 1
        # 释放锁
        lock.release()

    def delete(self, lock):
        # 获得锁
        lock.acquire()
        for i in range(0, 100000):
            self.balance -= 1
            # 释放锁
        lock.release()


if __name__ == "__main__":
    account = Account()
    lock = threading.Lock()
    # 创建线程
   thread_add = threading.Thread(target=account.add, args=(lock,), name='Add')
    thread_delete = threading.Thread(target=account.delete, args=(lock,), name='Delete')

    # 启动线程
   thread_add.start()
    thread_delete.start()

    # 等待线程结束
   thread_add.join()
    thread_delete.join()

    print('The final balance is: {}'.format(account.balance))

另一种实现不同线程间数据共享的方法就是使用消息队列queue。不像列表,queue是线程安全的,可以放心使用,见下文。

使用queue队列通信-经典的生产者和消费者模型

下例中创建了两个线程,一个负责生成,一个负责消费,所生成的产品存放在queue里,实现了不同线程间沟通。

from queue import Queue
import random, threading, time


# 生产者类
class Producer(threading.Thread):
    def __init__(self, name, queue):
        threading.Thread.__init__(self, name=name)
        self.queue = queue

    def run(self):
        for i in range(1, 5):
            print("{} is producing {} to the queue!".format(self.getName(), i))
            self.queue.put(i)
            time.sleep(random.randrange(10) / 5)
        print("%s finished!" % self.getName())


# 消费者类
class Consumer(threading.Thread):
    def __init__(self, name, queue):
        threading.Thread.__init__(self, name=name)
        self.queue = queue

    def run(self):
        for i in range(1, 5):
            val = self.queue.get()
            print("{} is consuming {} in the queue.".format(self.getName(), val))
            time.sleep(random.randrange(10))
        print("%s finished!" % self.getName())


def main():
    queue = Queue()
    producer = Producer('Producer', queue)
    consumer = Consumer('Consumer', queue)

    producer.start()
    consumer.start()

    producer.join()
    consumer.join()
    print('All threads finished!')


if __name__ == '__main__':
    main()

队列queue的put方法可以将一个对象obj放入队列中。如果队列已满,此方法将阻塞至队列有空间可用为止。queue的get方法一次返回队列中的一个成员。如果队列为空,此方法将阻塞至队列中有成员可用为止。queue同时还自带emtpy(), full()等方法来判断一个队列是否为空或已满,但是这些方法并不可靠,因为多线程和多进程,在返回结果和使用结果之间,队列中可能添加/删除了成员。

Python多进程和多线程哪个快?

由于GIL的存在,很多人认为Python多进程编程更快,针对多核CPU,理论上来说也是采用多进程更能有效利用资源。网上很多人已做过比较,我直接告诉你结论吧。

  • 对CPU密集型代码(比如循环计算) – 多进程效率更高
  • 对IO密集型代码(比如文件操作,网络爬虫) – 多线程效率更高。

为什么是这样呢?其实也不难理解。对于IO密集型操作,大部分消耗时间其实是等待时间,在等待时间中CPU是不需要工作的,那你在此期间提供双CPU资源也是利用不上的,相反对于CPU密集型代码,2个CPU干活肯定比一个CPU快很多。那么为什么多线程会对IO密集型代码有用呢?这时因为python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。

Vector Quantization 矢量量化 [VQVAE]

http://www.mqasem.net/vectorquantization/vq.html

VQ, 即Vector Quantization,矢量量化,在多个场景下使用,如图像压缩,声音压缩,语音识别等。

Github: https://github.com/lucidrains/vector-quantize-pytorch

矢量量化方法,即Vector Quantization,其具体定义为:将一个向量空间中的点用其中的一个有限子集来进行编码的过程。

什么是VQ?

作为示例,我们在不失一般性的情况下采用二维情况下的向量。 图 1 显示了空间中的一些向量。 与每个向量簇相关联的是一个代表性代码字。 每个代码字都位于其自己的 Voronoi 区域中。 为了说明,这些区域在图 1 中用假想线分隔。 给定一个输入向量,被选择来表示它的代码字是在同一个 Voronoi 区域中的码字。

相互欧几里德距离最近的点代表为码字

欧几里德距离定义为:

VQ如何在压缩中工作?

Vevtor quantizer由两个操作组成。 第一个是编码器,第二个是解码器。 编码器采用输入向量并输出提供最低失真的码字索引。 在这种情况下,通过评估输入向量与码本中每个码字之间的欧几里得距离,可以找到最低失真。 一旦找到最接近的码字,该码字的索引就会通过通道发送(该通道可以是计算机存储、通信通道等)。 当编码器接收到代码字的索引时,它用相关的代码字替换索引。 

在矢量量化编码中,关键是码本的建立和码字搜索算法,如果想对矢量量化有个整体的概览,强烈推荐《Handbook of Image and Video Processing》一书中Fundamentals of Vector Quantization章节。下面对矢量量化中两类典型的方法多阶段矢量量化、乘积量化以及乘积量化的改进做简单介绍。

codebook如何设计?

到目前为止,我们已经讨论了 VQ 的工作方式,但我们还没有讨论如何生成码本。 什么码字最能代表一组给定的输入向量? 应该选多少?

不幸的是,设计一个最能代表输入向量集的密码本是 NP 难的。 这意味着它需要在空间中穷尽搜索最佳可能的码字,并且随着码字数量的增加,搜索呈指数增长(如果你能在多项式时间内找到最佳解决方案,你的名字将永远载入史册)。 因此,我们求助于次优码本设计方案,第一个想到的是最简单的。 它以 Linde-Buzo-Gray 的名字命名为 LBG,Linde-Buzo-Gray 是这个想法的作者。 该算法类似于k-means算法。

算法如下,

  1. 确定码字数 N 或码本的大小。

2. 随机选择N个码字,将其作为初始码本。 可以从一组输入向量中随机选择初始码字。

3. 使用欧几里得距离度量将每个码字周围的向量聚类。 这是通过获取每个输入向量并找到它与每个码字之间的欧几里德距离来完成的。 输入向量属于产生最小距离的码字簇。

4. 计算新的码字集。 这是通过获取每个集群的平均值来完成的。 添加每个向量的分量并除以群集中的向量数。

重复2和3直到所有码字不再变化或者变化很小为止。

该算法是迄今为止最受欢迎的,这是由于它的简单性。 虽然它是局部最优的,但速度很慢。 它慢的原因是因为对于每次迭代,确定每个聚类需要将每个输入向量与码本中的所有码字进行比较。

典型的方法:

下面对矢量量化中两类典型的方法多阶段矢量量化、乘积量化以及乘积量化的改进做简单介绍。

1、多阶段矢量量化:

多阶段矢量量化(Multi-Stage Vector Quantization,MSVQ)也称为残差矢量量化(Residual Vector Quantization, RVQ),它是一种思想,即将编码任务分解为一系列级联过程。级联过程可以用下图直观的展示出来:

如上图所示,对于待量化的向量x,经过一级量化器quantizer1后,得到的量化残差为r1 = x – C1b1,其中C1为一级量化器的码本,b1为x经过一级量化器quantizer1后的表示结果,将一级量化误差r1作为二级量化器的输入,后面过程与此类似。通过这种级联量化的量化方式,当构建的量化器为无穷个时,x可以被这无穷个码本精确表示。上图右侧子图比较直观的描绘了x被多个码本逐步近似的过程。

上述 C1、C2、…、Ci、… 这些码本在构建的时候,可以采用KMeans等方式得到各个量化器的码本。以上面构建的4个级联的码本为例,当得到码本C1、C2、C3、C4后,x量化的结果即可用[b1, b2, b3, b4]表示。对于xq查询向量与x距离的计算,在计算xq与 C1、C2、…、Ci、… 之间的内积距离表后,可以通过查表的方式,获取到非对称距离。

这种多阶段级联的矢量量化方式,相比单阶段一次性量化,极大的降低了码本在训练过程中消耗的计算资源。举个例子,4个阶段的MSVQ,每阶段用KMeans只需构建构建256大小的码本,则对空间分割构建的cell数目为256256256256,效率是很高的,但是如果采用单阶段一次性量化构建4294967296大小的码本,这个码本根本没法用KMeans聚出来。此外在计算距离的时候,采用4阶段的MSVQ方式,只需计算4256次距离的计算构成距离表,然后采用查表方式计算距离,而单阶段一次性量化需要计算4294967296次的距离计算。MSVQ的进一步加速版本是倒排MSVQ,将一级码本视为倒排链,从而构建倒排结构,构建MSVQ倒排结构。

我们可以将MSVQ类比成“深度加深”的过程,下面介绍的非常经典的乘积量化方法,可以为“宽度加宽”的过程。

2、乘积量化:

乘积量化(Product Quantization,PQ)是Herve Jegou在2011年提出的一种非常经典实用的矢量量化索引方法,在工业界向量索引中已得到广泛的引用,并作为主要的向量索引方法,在Fasis有非常高效的实现。乘积量化的核心思想是分段(划分子空间)和聚类,或者说具体应用到ANN近似最近邻搜索上,KMeans是PQ乘积量化子空间数目为1的特例。PQ乘积量化生成码本和量化的过程可以用如下图示来说明:

在训练阶段,针对N个训练样本,假设样本维度为128维,我们将其切分为4个子空间,则每一个子空间的维度为32维,然后我们在每一个子空间中,对子向量采用K-Means对其进行聚类(图中示意聚成256类),这样每一个子空间都能得到一个码本。这样训练样本的每个子段,都可以用子空间的聚类中心来近似,对应的编码即为类中心的ID。如图所示,通过这样一种编码方式,训练样本仅使用的很短的一个编码得以表示,从而达到量化的目的。对于待编码的样本,将它进行相同的切分,然后在各个子空间里逐一找到距离它们最近的类中心,然后用类中心的id来表示它们,即完成了待编码样本的编码。

正如前面所说的,在矢量量化编码中,关键是码本的建立和码字的搜索算法,在上面,我们得到了建立的码本以及量化编码的方式。剩下的重点就是查询样本与dataset中的样本距离如何计算的问题了。

在查询阶段,PQ同样在计算查询样本与dataset中各个样本的距离,只不过这种距离的计算转化为间接近似的方法而获得。PQ乘积量化方法在计算距离的时候,有两种距离计算方式,一种是对称距离,另外一种是非对称距离。非对称距离的损失小(也就是更接近真实距离),实际中也经常采用这种距离计算方式。下面过程示意的是查询样本来到时,以非对称距离的方式(红框标识出来的部分)计算到dataset样本间的计算示意:

具体地,查询向量来到时,按训练样本生成码本的过程,将其同样分成相同的子段,然后在每个子空间中,计算子段到该子空间中所有聚类中心得距离,如图中所示,可以得到4*256个距离,这里为便于后面的理解说明,可以把这些算好的距离称作距离表。在计算库中某个样本到查询向量的距离时,比如编码为(124, 56, 132, 222)这个样本到查询向量的距离时,我们分别到距离表中取各个子段对应的距离即可,比如编码为124这个子段,在第1个算出的256个距离里面把编号为124的那个距离取出来就可,所有子段对应的距离取出来后,将这些子段的距离求和相加,即得到该样本到查询样本间的非对称距离。所有距离算好后,排序后即得到我们最终想要的结果。

从上面这个过程可以很清楚地看出PQ乘积量化能够加速索引的原理:即将全样本的距离计算,转化为到子空间类中心的距离计算。比如上面所举的例子,原本brute-force search的方式计算距离的次数随样本数目N成线性增长,但是经过PQ编码后,对于耗时的距离计算,只要计算4*256次,几乎可以忽略此时间的消耗。另外,从上图也可以看出,对特征进行编码后,可以用一个相对比较短的编码来表示样本,自然对于内存的消耗要大大小于brute-force search的方式。

在某些特殊的场合,我们总是希望获得精确的距离,而不是近似的距离,并且我们总是喜欢获取向量间的余弦相似度(余弦相似度距离范围在[-1,1]之间,便于设置固定的阈值),针对这种场景,可以针对PQ乘积量化得到的前top@K做一个brute-force search的排序。

3、倒排乘积量化

倒排PQ乘积量化(IVFPQ)是PQ乘积量化的更进一步加速版。其加速的本质逃不开在最前面强调的是加速原理:brute-force搜索的方式是在全空间进行搜索,为了加快查找的速度,几乎所有的ANN方法都是通过对全空间分割,将其分割成很多小的子空间,在搜索的时候,通过某种方式,快速锁定在某一(几)子空间,然后在该(几个)子空间里做遍历。在上一小节可以看出,PQ乘积量化计算距离的时候,距离虽然已经预先算好了,但是对于每个样本到查询样本的距离,还是得老老实实挨个去求和相加计算距离。但是,实际上我们感兴趣的是那些跟查询样本相近的样本(姑且称这样的区域为感兴趣区域),也就是说老老实实挨个相加其实做了很多的无用功,如果能够通过某种手段快速将全局遍历锁定为感兴趣区域,则可以舍去不必要的全局计算以及排序。倒排PQ乘积量化的”倒排“,正是这样一种思想的体现,在具体实施手段上,采用的是通过聚类的方式实现感兴趣区域的快速定位,在倒排PQ乘积量化中,聚类可以说应用得淋漓尽致。

倒排PQ乘积量化整个过程如下图所示:

在PQ乘积量化之前,增加了一个粗量化过程。具体地,先对N个训练样本采用KMeans进行聚类,这里聚类的数目一般设置得不应过大,一般设置为1024差不多,这种可以以比较快的速度完成聚类过程。得到了聚类中心后,针对每一个样本x_i,找到其距离最近的类中心c_i后,两者相减得到样本x_i的残差向量(x_i-c_i),后面剩下的过程,就是针对(x_i-c_i)的PQ乘积量化过程,此过程不再赘述。

在查询的时候,通过相同的粗量化,可以快速定位到查询向量属于哪个c_i(即在哪一个感兴趣区域),然后在该感兴趣区域按上面所述的PQ乘积量化距离计算方式计算距离。

4、最优乘积量化

最优乘积量化(Optimal Product Quantization, OPQ)是PQ的一种改进版本。其改进体现在,致力于在子空间分割时,对各子空间的方差进行均衡。在具体实现的时候,我们可以将Optimal的过程实现为一个组件。

通常,用于检索的原始特征维度较高,所以实际在使用PQ等方法构建索引的时候,常会对高维的特征使用PCA等降维方法对特征先做降维处理,这样降维预处理,可以达到两个目的:一是降低特征维度;二是在对向量进行子段切分的时候要求特征各个维度是不相关的,做完PCA之后,可以一定程度缓解这个问题。但是这么做了后,在切分子段的时候,采用顺序切分子段仍然存在一定的问题,这个问题可以借用ITQ中的一个二维平面的例子加以说明:

如上面a图所示,对于PCA降维后的二维空间,假设在做PQ的时候,将子段数目设置为2段,即切分成x和y两个子向量,然后分别在x和y上做聚类(假设聚类中心设置为2)。对a图和c图聚类的结果进行比较,可以明显的发现,a图在y方向上聚类的效果明显差于c图,而PQ又是采用聚类中心来近似原始向量(这里指降维后的向量),也就是c图是我们需要的结果。这个问题可以转化为数据方差来描述:在做PQ编码时,对于切分的各个子空间,我们应尽可能使得各个子空间的方差比较接近,最理想的情况是各个子空间的方差都相等。上图a图中,x和y各个方向的方差明显是差得比较大的,而对于c图,x和y方向各个方向的方差差不多是比较接近的。

为了在切分子段的时候,使得各个子空间的方差尽可能的一致,Herve Jegou在Aggregating local descriptors into a compact image representation中提出使用一个正交矩阵来对PCA降维后的数据再做一次变换,使得各个子空间的方差尽可能的一致。其对应的待优化目标函数见论文的第5页,由于优化该目标函数极其困难,Herve Jegou使用了Householder矩阵来得到该正交矩阵,但是得到的该正交矩阵并不能很好的均衡子空间的方差。

OPQ致力于解决的问题正是对各个子空间方差的均衡。具体到方法上,OPQ借鉴了ITQ的思想,在聚类的时候对聚类中心寻找对应的最优旋转矩阵,使得所有子空间中各个数据点到对应子空间的类中心的L2损失的求和最小。OPQ在具体求解的时候,分为非参求解方法和带参求解方法,具体为:

  • 非参求解方法。跟ITQ的求解过程一样。
  • 带参求解方法。带参求解方法假设数据服从高斯分布,在此条件下,最终可以将求解过程简化为数据经过PCA分解后,特征值如何分组的问题。在实际中,该解法更具备高实用性。

从上面可以看到,倒排乘积量化IVFPQ可以视为1阶段的MSVQ和PQ的结合版本,而OPQ是PQ对子空间方差均衡的改进。基于这样一种普适性的视角,可以构建一种矢量量化框架,MSVQ、PQ、OPQ中的O,都是该矢量量化框架中的基础组件,通过这些组件的组合,我们可以敏捷的得到上面介绍方法的各种实现。

AudioLM

A Language Modeling Approach to Audio Generation

Paper:https://google-research.github.io/seanet/audiolm/examples/

Github: https://github.com/lucidrains/audiolm-pytorch

谷歌开发音频生成模型,创造似真实声音的AI语音。近日,谷歌又开发出一种音频生成 AI。此名为 AudioLM 的模型只通过收听音频即可生成逼真的语音和音乐。

AI 生成的音频其实很常见,像生活中用到的语音助手使用自然语言处理声音。OpenAI 曾开发名为 Jukebox 的 AI 音乐系统也令人印象深刻。但过去用 AI 生成音频,大都需要人们提前准备转录和标记基于文本的训练数据,这需要耗费极大时间和人力。而谷歌在其官方博文中表示:“AudioLM 是纯音频语言模型,无须借助文本来训练,只是从原始音频中进行学习。”

相较之前的类似系统,AudioLM 生成的音频在语音语法、音乐旋律等方面,具有长时间的一致性和高保真度。9 月 7 日,相关论文以《AudioLM: 一种实现音频生成的语言建模方法》(AudioLM: a Language Modeling Approach to Audio Generation)为题提交在 arXiv 上。正如音乐从单个音符构建复杂的音乐短语一样。生成逼真的音频需要以不同比例表示的建模信息。而在所有这些音阶上创建结构良好且连贯的音频序列是一项挑战。据了解,音频语言模型 AudioLM 的背后利用了文本到图像模型的进步来生成音频。

近年来,在大量文本上训练的语言模型,除了对话、总结等文本任务,也在高质量图像上展示出优秀的才能,这体现了语言模型对多类型信号进行建模的能力。但从文本语言模型转向音频语言模型,仍有一些问题需要解决。比如,文本和音频之间不是一一对应关系。同一句话可以有不同风格的呈现方式。此外,谷歌还在其官网提到:“音频的数据速率要更高,用数十个字符就可表示的书面句子,其音频波形通常含有几十万个值。”

为解决这些问题,研究人员采用了语义和声学两种音频令牌。语义令牌(语义标记来自音频框架 w2v-BERT)捕获语音、旋律等局部依赖性和语法、和声等全局长期结构。但是,语义令牌创建的音频保真度较差。因此谷歌还利用了由 SoundStream 神经编解码器生成的声学令牌,该令牌捕获音频波形的详细信息。
在经过对音频序列的声学属性、结构等分别进行建模,以及用精细声学模型为语音添加生动特征几个步骤后,声学令牌被送到 SoundStream 解码器以再建波形。
谷歌还展示 AudioLM 的一般适用性,在被要求继续语音或音乐,并生成在训练期间未看到的新内容时,AudioLM 实现了效果流畅、风格接近的音频生成。特别是,使用 AudioLM 生成的钢琴音乐比使用现有 AI 技术生成的钢琴音乐听起来更自然,后者感觉往往很混乱。

为了生成逼真的钢琴音乐,AudioLM 必须在钢琴键被击中时捕捉每个音符中包含的许多微妙的振动,生成的音乐还必须在一段时间内保持其节奏与和声。对此,在卡内基梅隆大学研究计算机生成音乐的教授罗杰·丹嫩伯格(Roger Dannenberg)对媒体提到,AudioLM 在重新创造人类音乐中固有的一些重复模式方面出奇地擅长,或表明它正在学习某种结构的多个层次。

AudioLM 经过训练,可以了解哪些类型的声音片段经常一起出现,并且反向使用该过程来生成句子。除了音乐,它还可以模仿原始说话者的口音和节奏,并能学习口语中固有的停顿和感叹等特点。经测试,AudioLM 生成的语音与真实语音几乎无法区分。

据了解,AudioLM 远远超出了语音的范围,可以模拟任意音频信号。这可方便扩展到其他类型的音频,以及将 AudioLM 集成到编码器-解码器框架中,以执行文本到语音转换或语音到语音转换等条件任务。然后,更自然的语音生成技术,可以用作视频和幻灯片的背景音轨,帮助改善在医疗等环境下工作的可访问性工具和机器人。

未来,研究团队还希望创造更复杂的声音,就像一个乐队使用不同的乐器,或模仿热带雨林中嘈杂的声音。

python中map()函数

描述

map() 会根据提供的函数对指定序列做映射。

第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。

语法

map() 函数语法:

map(function, iterable1,iterable2, ...)

参数function传的是一个函数名,可以是python内置的,也可以是自定义的。
参数iterable传的是一个可以迭代的对象,例如列表,元组,字符串这样的。

这个函数的意思就是将function应用于iterable的每一个元素,结果以列表的形式返回。注意到没有,iterable后面还有省略号,意思就是可以传很多个iterable,如果有额外的iterable参数,并行的从这些参数中取元素,并调用function。如果一个iterable参数比另外的iterable参数要短,将以None扩展该参数元素。

def add(x,y,z):
    return x,y,z

list1 = [1,2,3]
list2 = [1,2,3,4]
list3 = [1,2,3,4,5]
res = map(add, list1, list2, list3)
print(res)

输出:
[(1, 1, 1), (2, 2, 2), (3, 3, 3), (None, 4, 4), (None, None, 5)]