Synchronous LLMs as Full-Duplex Dialogue Agents


同步 LLMs 作为全双工对话代理

https://syncllm.cs.washington.edu/

尽管对语音对话代理进行建模有着广泛的兴趣,但大多数方法本质上都是 “半双工” 的 —— 仅限于回合制交互,响应需要用户明确提示或隐式跟踪中断或静音事件。相比之下,人类对话是“全双工”的,允许以快速和动态的轮流、重叠语音和反向通道的形式实现丰富的同步性。从技术上讲,使用 LLMs在于将同步建模为预训练的 LLMs 没有“时间”感。为了弥合这一差距,我们提出了用于全双工口语对话建模的同步 LLMs。我们设计了一种新颖的机制,将时间信息集成到 Llama3-8b 中,以便它们与现实世界的时钟同步运行。我们还介绍了一个训练方法,该方法使用从文本对话数据生成的 212k 小时的合成口语对话数据来创建一个模型,该模型仅使用 2k 小时的真实口语对话数据即可生成有意义且自然的口语对话。同步 LLMs 在保持自然性的同时,在对话意义方面优于最先进的。最后,我们通过模拟在不同数据集上训练的两个代理之间的交互,同时考虑高达 240 毫秒的 Internet 规模延迟,展示了该模型参与全双工对话的能力。

Latency tolerant interaction

SyncLLM 是一种仅限自回归解码器的 transformer 模型,可以用作全双工对话代理。在下图中,在当前时间步(图中的 chunk N),SyncLLM 的上下文包含 LLM 的语音到当前 chunk 的交错块,以及对应于除当前 chunk 之外的所有 chunk 的用户语音。为了与用户同步,LLM 必须在当前 chunk 结束之前生成其下一个 chunk (chunk N+1)。因此,SyncLLM 首先生成估计用户的 chunk,该 chunk 又附加到上下文并用于预测其下一个 chunk。

SyncLLM 经过训练,可以预测对应于对话两侧的语音单元的交错块,如图 2 所示。1. 在每个时间步长中,模型预测与对话一侧的固定持续时间(称为模型的块大小)相对应的语音单位,然后是与对话的用户一侧相对应的语音单位。通过这种方法,该模型能够生成与真实时钟同步的两个语音流。这允许我们的方法对所有对话线索进行建模,例如反向通道、重叠、中断等。

Training

SyncLLM 使用简单的 next-token 预测目标进行训练,其中全双工口语对话的格式如下。(顶行)我们将语音对话表示为 HuBERT 令牌的交错块,其中块大小决定了同步令牌 [S0] 的频率。(中间行)我们训练 SyncLLM 生成去重 HuBERT 令牌的交错块以及定期同步令牌。(底行)我们在每个块中插入去重的标记,以获得原始格式的语音对话序列。

如果我们可以将两个令牌流中的一个替换为与真实用户相对应的令牌流,那么经过训练的模型可以用于全双工语音交互。在图 .1,紫色框对应于每个时间块中 LLM 侧对话的标记序列,绿色框对应于对话的用户侧。我们通过丢弃 LLM 用户语音交互。

HuBERT 令牌 :使用 HuBERT  来表示语音。我们使用 Nguyen 等 人的分词化参数,分词采样率为 25 Hz,每 40 毫秒音频产生一个分词,词汇量为 501。为了模拟两个说话人 0 和 1 之间的对话,我们定义了两个特殊的标记 [S0] 和 [S1],称为说话人标签,分别指定每个说话人的标记序列的开始。我们将对话表示为两个并行的语音流,每个说话人一个,交错,如上图 的顶行所示。对于每个流,我们嵌入一个周期性的 speaker 标签,其时间段等于模型的块大小。

重复数据删除。HuBERT 令牌的固定时间段对于在全双工对话中对时间进行建模很有用。然而,原始 HuBERT 序列由大量重复的标记组成,主要是由话语内和话语之间的沉默引起的。每个唯一标记的重复次数表示标记所表示的声学单元的持续时间。然而,语义内容可以通过在删除重复标记序列时仅考虑唯一标记来建模。重复的标记序列会对最终口语对话模型的语义能力产生不利影响 ,因为如上图 所示,与去重序列相比,它们每个标记的语义内容比去重后的序列低约50%。

插值。虽然去重的标记序列有利于自回归建模,但要生成适合语音合成的标记序列,我们需要原始格式的周期性 HuBERT 标记。由于 speaker 标签 [S0] 维护了计时信息,因此我们知道每个块中去重后删除的令牌数量。我们使用它来插入已删除重复数据的令牌,以匹配每个块中的预期令牌数量。例如,在 Fig.2,则说话人 0 的流在去重后只有一个 Token。但是由于在这种情况下,块大小为 160 毫秒,因此每个块将包含 160/40 = 4 个令牌。所以如图 3 日的第三行所示。2 中,我们重复 deed token 三次以重建 chunk。如果一个块有多个去重的令牌,如图 2 中的第二个 token。2,我们以相等的数量重复每个 Token。我们注意到这种方法可能会导致错误,因为原始 chunk 可能不遵循这种启发式方法。我们观察到,即使数据块大小为 240 毫秒,其影响也是难以察觉的,这可能是因为每个标记的预测持续时间的误差受到数据块大小的上限。此外,在具有更多新词元的 chunk 中,误差会更小。

采用三阶段训练,训练数据:

第 1 阶段:具有合成语音数据的回合制口语对话模型。 鉴于口语对话数据有限,我们从大规模文本对话数据集中生成合成语音数据。 我们使用监督式微调 (SFT) 数据集作为我们的源文本对话数据集。我们使用 Bark TTS AI (2023) 模型生成文本对话数据集的口语版本,其中包含 10 个说话人预设。

第 2 阶段:假设没有重叠的全双工对话。回合制语音对话是无重叠的全双工对话的特例。基于这一观察结果,我们可以将合成的语音对话数据视为全双工语音对话数据,其中轮到一个说话人时,另一个说话人完全沉默。在这个阶段,我们从文本对话数据创建合成的口语对话数据,与上一阶段类似,但有一个主要区别:从对话的每个回合中,我们生成一个对应于一个说话者的语音话语和对应于另一个说话者的等长沉默。然后,我们以图 2 第二行所示的格式对并行语音对话数据进行标记。2. 这样,我们可以进一步利用文本对话数据来帮助我们的模型学习图 1 中的标记序列格式。2. 此微调阶段对话语中的计时进行建模。该模型还无法学习轮流提示,例如反向信道或两个说话人之间的重叠。

第 3 阶段:使用真实世界的口语对话数据进行建模。最后,我们对模型进行微调,从现实世界的口语对话数据中学习轮流线索。我们使用 Fisher Cieri et al. (2004) 的数据集,其中包含 2000 小时的口语对话,其中对话中每个说话者的语音都被分成独立的音频通道。我们将数据集分别以 98:1:1 的比例分为 train、val 和 test split。对话中的每个音频声道都单独标记化,并以上一阶段使用的全双工对话格式交错。在此阶段,除了学习话语中的计时外,该模型还学习有效的轮流对话线索,例如在轮流和反向通道之间准确分配停顿。

SimVQ:使用一个线性层解决矢量量化模型中的表示坍缩问题

摘自:https://spaces.ac.cn/archives/10519

音频表征工作

SimVQ: Addressing Representation Collapse in Vector Quantized Models with One Linear Layer

Github: https://github.com/youngsheen/SimVQ

论文提出只在 VQ 的编码表多加一个线性变换[W],无需其他改动,就能达到加速收敛、提升编码利用率、降低重构损失等效果,相当简单有效。

普通AE和VQ-VAE的数学形式:

VQ-VAE不是VAE,它只是一个加上了VQ的AE,没有VAE的生成能力。而VQ则是将任意向量映射为编码表中与它最邻近的向量的操作,这个操作本身具有不可导的特性,所以通过STE来为encoder设计了梯度,并且新增了β,γ这两项损失,来为编码表提供梯度,同时也起到规整encoder表征的作用。

改动

论文将自己所提方法称为SimVQ,但没有解释Sim是什么含义,猜测Sim是Simple的缩写,因为SimVQ的改动确实太Simple了:

在编码表多乘了一个矩阵W,其他原封不动。

如果原本就是用式(2)训练VQ的,那么SimVQ可以直接简单上;如果原本是用EMA来更新编码表的(即β=0,然后用另外的滑动平均过程来更新编码表,这是VQ-VAE-2及后续一些模型的做法,在数学上等价于用SGD来优化编码表损失,而其他损失则可以用Adam等非SGD优化器),那么则需要取消这个操作,重新引入β项来端到端优化。

可能马上有读者质疑:这不就是将编码表的参数化从E改为EW吗?EW可以合并成一个矩阵,等价于一个新的E,按道理不改变模型的理论能力?是的,SimVQ对模型能力来说是不变的,但对SGD、Adam来说却是变的,它会改变优化器的学习过程,从而影响学习结果的好坏。

实验

根据论文的描述,SimVQ的代码就是在第一行VQGAN的代码上改的,改动就只有往VQ层插入了个线性变换,然后提升就非常显著了,不仅在相同编码表大小下达到了最优的重构质量,还能通过增加编码表大小进一步提高重构质量,这足以体现SimVQ的魅力——简单且有效。

笔者也在自己之前写的VQ-VAE代码上做了尝试,实测显示这个线性变换的加入,明显加速了VQ-VAE的收敛速度,并且最终的重构损失也有所降低。笔者还实验了W取对角阵的变体,这时候就相当于每个编码向量都element-wise地与一个参数向量(全一初始化)相乘,结果显示这样的变体也能起到相近的效果,介乎VQ与SimVQ之间。

分析:

直观来想,VQ对编码表的更新是比较“孤立”的,比如某个样本z被VQ为q,那么这个样本的梯度就只会影响q,不会影响编码表里的其他向量;但SimVQ不同,它不单会更新q,还会更新W,从几何意义上看,W就相当于编码表的基底,一旦更新W,那么整个编码表就会更新了。所以说,SimVQ使得整个编码表的“联动”更为密切,从而更有机会找到更优的解,而不是陷入“各自为政”的局部最优。

那为什么SimVQ能提高编码表的利用率呢?这个其实也不难理解。再次根据W是编码表基底的解释,如果编码表利用率过低,那么W就会出现“各向异性”,即基底偏向于那些被利用起来的编码,可是一旦基底发生这种变化,那么它的线性组合应该也是偏向于被利用起来的编码,从而利用率不会太低。说白了,可学习的基底会自动让自己的利用率变高,从而让整个编码表的利用率都提高起来。

然而,物极必反,如果全体编码都使劲往高利用率方向走,那么反而可能会导致编码表坍缩(codebook collapse),因此SimVQ默认采用了一个很保守的策略:只更新W,所有的q在随机初始化后就不更新了,这样一来就几乎杜绝了编码表坍缩的可能性。好消息是,在适当的编码维度下,实验显示q,W都更新和只更新W的表现都差不多,所以读者可以按照自己的偏好选择具体的形式。

延伸:

抛开VQ的背景,像SimVQ这种引入额外的参数但又在数学上等价,即不改变模型的理论拟合能力,只改变优化过程的动力学的做法,我们称为“过参数化(Overparameterization)”。

过参数化在神经网络中并不鲜见,比如现在模型的主流架构是Pre Norm即x+f(RMSNorm(x)),RMSNorm最后所乘的γ向量通常都是过参数化的,因为f的第一层通常就是线性变换,比如Attention是线性变换投影到Q、K、V,FFN是线性变换来升维,等等,这些模型在推理阶段γ向量完全可以合并到f的线性变换中,但鲜有看到在训练阶段就把γ去掉的做法。

这是因为不少人认为,深度学习模型之所以“好训”,过参数化有不可忽视的作用,因此贸然去掉已经充分验证的模型的过参数化风险很大。这里的“好训”,主要是指梯度下降这种理论上容易陷入局部最优的方法居然经常可以找到一个实际表现很好的解,这本身就是一件很不可思议的事情。还有《On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization》等工作,表明过参数化隐式地加速了训练,作用类似于SGD中的动量。

最后,VQ本质上可以理解为一种稀疏训练方案,所以SimVQ所带来的启发和改动,也许还能用于其他稀疏训练模型,比如MoE(Mixture of Experts)。当前的MoE训练方案中,Expert之间的更新也是比较独立的,只有被Router选中的Expert才会更新参数,那么是不是有可能像SimVQ一样,所有的Expert后都接一个共享参数的线性变换,用来提高Expert的利用效率?当然MoE本身跟VQ也有很多不同之处,这还只是个猜测。

FunCodec:音频编解码开源工具包,用于音频量化和文本到语音合成、音乐生成等

一个基础的、可重复的和可集成的用于神经语音编解码器的开源工具包

特点:

  • FunCodec 再现了最先进的模型,包括 SoundStream、Encodec 等。
  • FunCodec 可以很容易地扩展到 下游任务,例如 ASR 和 TTS。
  • FunCodec 可以在分布式 GPU 上训练模型, 和批处理模式下的推理。
  • FunCodec 原生支持频域、 更适合语音信号。
  • FunCode 模型可以通过语义标记进行增强, 例如音素和 Hubert 嵌入。

Available models

audio_codec-freqcodec_模型特点:频域模型,充分利用语音信号的短时结构,模型参数极少 (0.52M),计算复杂度极低 (0.34G flops),使用结构化 dropout 进行训练,使用单个模型在推理过程中启用各种带宽,将原始语音波形量化为离散标记序列

audio_codec-encodec_模型特点:使用大规模内部数据集进行训练,对许多场景都具有鲁棒性,在低频带宽度下实现更高的编解码器质量,使用结构化 dropout 进行训练,使用单个模型在推理过程中启用各种带宽,将原始语音波形量化为离散标记序列

与 EnCodec 和 SoundStream 相比, 使用以下改进的技术来训练模型,从而提高编解码器质量和 相同带宽下的 ViSQOL 分数:

  • 幅值频谱loss用于增强中高频信号
  • 结构化 dropout 用于平滑代码空间,并在单个模型中启用各种带宽
  • 码字由 k-means 集群而不是随机值初始化
  • 码本采用指数移动平均和死码消除机制进行维护,因此码本的利用率很高。

模型组成:

  • FunCodec 模型由五个模块组成:域转换模块、编码器、RVQ 模块、解码器和域反转模块。
  • 域变换:将信号转换为时域、短时频域、幅度-角度域或幅度-相位域。
  • 编码器:将信号编码为具有堆叠卷积层和 LSTM 层的紧凑表示。
  • 语义token(可选):使用语义标记增强编码器输出以增强内容信息,此模型中未使用。
  • RVQ:使用级联向量量化器将表示量化为离散标记的并行序列。
  • Decoder:将量化的 embedding 解码到与 inputs 相同的不同信号域中。
  • Domain Inversion:重新合成来自不同域的可感知波形。

Results

相比其他开源的音频编解码训练框架:

1. Comparison of academic models in terms of ViSQOL scores on LibriTTS dataset. † means the model is causal.

2. Comparison between FunCodec and other toolkits under (a) lower and (b) higher token rate. LS denotes Librispeech test sets. While Librispeech and gigaspeech are English corpora, aishell and Wenet are Mandarin corpora.

3. Comparison of FreqCodec and other time domain models in terms of ViSQOL score on LibriTTS. Mag denotes magnitude spectrogram. C_in represents the channel number of inputs.