LLM分词器-SentencePiece/tiktoken/subword-nmt

SentencePiece 简介

SentencePiece 在大模型领域主要用于文本的 分词 和 编码

分词 是将文本分割成一个个独立的词语或符号。传统的中文分词方法,例如 BMM 分词、HMM 分词,都是基于规则的,需要人工制定分词规则。而 SentencePiece 则是基于 无监督学习 的,它可以自动学习文本的语义和结构,并根据学习结果进行分词。

编码 是将分词后的词语或符号转换为数字形式,以便计算机能够处理。SentencePiece 使用了一种称为 字节对编码 的方法,它可以将每个词语或符号编码成一个或多个字节。字节对编码的优点是能够有效地利用空间,并且可以将词语或符号之间的关系编码到编码中。

SentencePiece 在大模型领域具有以下优势:

  • 分词效果好,能够准确地识别词语和符号的边界。
  • 编码效率高,能够节省空间。
  • 能够将词语或符号之间的关系编码到编码中,有利于模型学习。

因此,SentencePiece 已经被广泛应用于各大模型,例如 Google 的 BERTGPT-3,以及阿里巴巴的 M6 等。

简单来说,SentencePiece 就是大模型领域的一个 分词和编码工具。它可以帮助大模型更好地理解和处理文本。

自监督训练原理

SentencePiece 的自监督训练模型原理是通过 无监督学习 的方式,学习文本的语义和结构,并根据学习结果进行分词和编码。

具体来说,SentencePiece 的训练过程可以分为以下几个步骤:

  1. 数据准备:首先需要准备一个文本语料库,语料库中的文本可以是任何类型,例如新闻文章、书籍、代码等。
  2. 模型训练:使用无监督学习算法训练 SentencePiece 模型,模型的输入是文本语料库,输出是分词后的文本。
  3. 模型评估:使用评估指标评估模型的性能,例如分词准确率、召回率等。

SentencePiece 使用的无监督学习算法是一种称为 Masked Language Modeling (MLM) 的算法。MLM 的基本思想是:将文本中的部分词语或符号进行遮蔽,然后让模型预测被遮蔽的词语或符号。通过这种方式,模型可以学习文本的语义和结构。

在 SentencePiece 中,MLM 的具体实现如下:

  1. 随机选择文本中的部分词语或符号进行遮蔽。
  2. 将被遮蔽的词语或符号替换为一个特殊符号,例如 [MASK]
  3. 将处理后的文本输入模型,让模型预测被遮蔽的词语或符号。

通过这种方式,模型可以学习到被遮蔽词语或符号与周围词语或符号之间的关系,从而提高分词和编码的准确性。

SentencePiece 的自监督训练模型具有以下优势:

  • 不需要人工制定分词规则,能够自动学习文本的语义和结构。
  • 分词效果好,能够准确地识别词语和符号的边界。
  • 编码效率高,能够节省空间。

SentencePiece 的自监督训练模型已经被广泛应用于各大模型,例如 Google 的 BERT、GPT-3,以及阿里巴巴的 M6 等。

和 SentencePiece 类似的工具

  • Jieba:Jieba 是一个中文分词工具,它使用了一种称为 最大似然法 的方法进行分词。Jieba 的分词效果较好,并且速度较快。
  • Hmmseg:Hmmseg 是另一个中文分词工具,它使用了一种称为 隐马尔可夫模型 的方法进行分词。Hmmseg 的分词效果较好,并且可以支持多种语言。
  • Stanford CoreNLP:Stanford CoreNLP 是一个自然语言处理工具包,它包含了分词、词性标注、句法分析等功能。Stanford CoreNLP 的分词效果较好,并且可以支持多种语言。

使用建议:

  • 如果需要对中文文本进行分词,并且对分词效果要求较高,可以选择 SentencePiece、Jieba 或 Hmmseg。
  • 如果需要对多种语言文本进行分词,可以选择 Stanford CoreNLP。
  • 如果需要对文本进行分词和编码,并且对速度要求较高,可以选择 Jieba。
  • 如果需要对文本进行分词和编码,并且对分词效果要求较高,可以选择 SentencePiece 或 Hmmseg。

TiToken 简介

Tiktoken 的功能与 SentencePiece 类似,都是用于文本的 分词 和 编码

Tiktoken 是一个基于 BPE 算法的 快速分词器,它专门针对 GPT-4 和 ChatGPT 等大模型进行了优化。Tiktoken 的主要特点如下:

  • 速度快:Tiktoken 的分词速度比 SentencePiece 快很多,可以满足大模型训练和推理的需求。
  • 效果好:Tiktoken 的分词效果与 SentencePiece 相当,能够准确地识别词语和符号的边界。
  • 易用性:Tiktoken 提供了简单的 API 接口,方便使用。

Tiktoken 与 SentencePiece 的主要区别 如下:

  • 分词算法:Tiktoken 使用 BPE 算法进行分词,而 SentencePiece 使用的是无监督学习算法
  • 速度:Tiktoken 的分词速度比 SentencePiece 快很多。
  • 模型:Tiktoken 专门针对 GPT-4 和 ChatGPT 等大模型进行了优化,而 SentencePiece 则是通用的。

具体使用建议:

  • 如果需要对文本进行快速分词,并且对分词效果要求较高,可以选择 Tiktoken。
  • 如果需要对文本进行分词和编码,并且需要支持多种语言,可以选择 SentencePiece。
  • 如果需要对 GPT-4 或 ChatGPT 等大模型进行训练或推理,可以选择 Tiktoken。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注