Sequence Modeling With CTC

网址: https://distill.pub/2017/ctc/

在语音识别中,我们的数据集是音频文件和其对应的文本,不幸的是,音频文件和文本很难在单词的单位上对齐。除了语言识别,在OCR,机器翻译中,都存在类似的Sequence to Sequence结构,同样也需要在预处理操作时进行对齐,但是这种对齐有时候是非常困难的。如果不使用对齐而直接训练模型时,由于人的语速的不同,或者字符间距离的不同,导致模型很难收敛。

我们可以设计一个规则,比如“一个字符对应十个语音输入”。但是人们的语速是不同的,所以这种规则总是可以被打破的。另一种方法是手动将每个字符与其在音频中的位置对齐。从建模的角度来看,这工作得很好,我们知道每个输入时间步的基本事实。 然而,这对数据集的标注工作是非常耗时的。

这个问题不仅仅出现在语音识别中。我们在许多其他地方看到它。来自图像或笔画序列的手写识别就是一个例子。

CTC(Connectionist Temporal Classification 连接时序分类)是一种避开输入与输出手动对齐的一种方式,是非常适合语音识别或者OCR这种应用的。

给定输入序列 𝑋=[𝑥1,𝑥2,…,𝑥𝑇] 以及对应的标签数据 𝑌=[𝑦1,𝑦2,..,𝑦𝑈] ,例如语音识别中的音频文件和文本文件。我们的工作是找到 𝑋 到 𝑌 的一个映射,这种对时序数据进行分类的算法叫做Temporal Classification。

对比传统的分类方法,时序分类有如下难点:

  1. 𝑋 和 𝑌 的长度都是变化的;
  2. 𝑋 和 𝑌 的长度是不相等的;
  3. 对于一个端到端的模型,我们并不希望手动设计𝑋 和 𝑌 的之间的对齐。

CTC提供了解决方案,对于一个给定的输入序列 𝑋 ,CTC给出所有可能的 𝑌 的输出分布。根据这个分布,我们可以输出最可能的结果或者给出某个输出的概率。我们会要求CTC有效地完成下面这两件事。

1、损失函数:给定输入序列 𝑋 ,我们希望最大化 𝑌 的后验概率 𝑃(𝑌|𝑋) , 𝑃(𝑌|𝑋) 应该是可导的,这样我们能执行梯度下降算法;

2、测试:给定一个训练好的模型和输入序列 𝑋 ,我们希望输出概率最高的 𝑌 :

当然,在测试时,我们希望 𝑌∗ 能够尽快的被搜索到。

算法详解

给定输入 𝑋 ,CTC输出每个可能输出及其条件概率。问题的关键是CTC的输出概率是如何考虑 𝑋 和 𝑌 之间的对齐的,这种对齐也是构建损失函数的基础。所以,首先我们分析CTC的对齐方式,然后我们在分析CTC的损失函数的构造。

1.1 对齐

需要注意的是,CTC本身是不需要对齐的,但是我们需要知道 𝑋 的输出路径和最终输出结果的对应关系,因为在CTC中,多个输出路径可能对应一个输出结果,举例来理解。例如在OCR的任务中,输入 𝑋 是含有“CAT”的图片,输出 𝑌 是文本[C, A, T]。将 𝑋 分割成若干个时间片,每个时间片得到一个输出,一个最简答的解决方案是合并连续重复出现的字母,如图2.

这个问题有两个缺点:

  1. 几乎不可能将 𝑋 的每个时间片都和输出Y对应上,例如OCR中字符的间隔,语音识别中的停顿;
  2. 不能处理有连续重复字符出现的情况,例如单词“HELLO”,按照上面的算法,输出的是“HELO”而非“HELLO”。

为了解决上面的问题,CTC引入了空白字符 𝜖 ,例如OCR中的字符间距,语音识别中的停顿均表示为 𝜖 。所以,CTC的对齐涉及去除重复字母和去除 𝜖 两部分,如图3。

这种对齐方式有三个特征:

  1. 𝑋 与 𝑌 之间的时间片映射是单调的,即如果 𝑋 向前移动一个时间片, 𝑌 保持不动或者也向前移动一个时间片;
  2. 𝑋 与 𝑌 之间的映射是多对一的,一个或多个输入元素可以与单个输出元素对齐,但反之则不然,所以也有了特征3;
  3. 𝑋 的长度大于等于 𝑌 的长度。

1.2 损失函数

CTC对齐为我们提供了一种从每个时间步的概率到输出序列的概率的自然方法。

也就是说,对应标签 𝑌 ,其关于输入 𝑋 的后验概率可以表示为所有映射为 𝑌 的路径之和,我们的目标就是最大化 𝑌 关于 𝑥=𝑦 的后验概率 𝑃(𝑌|𝑋) 。假设每个时间片的输出是相互独立的,则路径的后验概率是每个时间片概率的累积,公式及其详细含义如图5。

上面的CTC算法存在性能问题,对于一个时间片长度为 𝑇 的 𝑁 分类任务,所有可能的路径数为 𝑁𝑇 ,在很多情况下,这几乎是一个宇宙级别的数字,用于计算Loss几乎是不现实的。在CTC中采用了动态规划的思想来对查找路径进行剪枝,算法的核心思想是如果路径 𝜋1 和路径 𝜋2 在时间片 𝑡 之前的输出均相等,我们就可以提前合并他们,如图6。

其中,横轴的单位是 𝑋 的时间片,纵轴的单位是 𝑌 插入 𝜖 的序列 𝑍 。例如对于单词“ZOO”,插入 𝜖 后为:

𝑍={𝜖,𝑍,𝜖,𝑂,𝜖,𝑂,𝜖}

我们用 𝛼𝑠,𝑡 表示路径中已经合并的在横轴单位为 𝑡 ,纵轴单位为 𝑠 的节点。根据CTC的对齐方式的三个特征,输入有9个时间片,标签内容是“ZOO”, 𝑃(𝑌|𝑋) 的所有可能的合法路径如下图:

图7:CTC中单词ZOO的所有合法路径

有两个有效的起始节点和两个有效的最终节点,因为序列开头和结尾的 𝜖ϵ 是可选的。完全概率是最后两个节点的和。现在我们可以有效地计算损失函数,下一步是计算梯度并训练模型。CTC损失函数相对于每个时间步的输出概率是可微的,因为它只是它们的总和和乘积。考虑到这一点,我们可以解析地计算损失函数相对于(未归一化的)输出概率的梯度,并从那里像往常一样运行反向传播。

对于数据集 𝐷 ,模型的优化目标是最小化负对数似然:

1.3 预测

当我们训练好一个RNN模型时,给定一个输入序列 𝑋 ,我们需要找到最可能的输出,也就是求解

𝑌∗=arg⁡max𝑌⁡𝑝(𝑌|𝑋)

求解最可能的输出有两种方案,一种是Greedy Search,第二种是beam search

1.3.1 Greedy Search

每个时间片均取该时间片概率最高的节点作为输出:

1.3.2 Beam Search

Beam Search是寻找全局最优值和Greedy Search在查找时间和模型精度的一个折中。一个简单的beam search在每个时间片计算所有可能假设的概率,并从中选出最高的几个作为一组。然后再从这组假设的基础上产生概率最高的几个作为一组假设,依次进行,直到达到最后一个时间片,下图是beam search的宽度为3的搜索过程,红线为选中的假设。

到目前为止,我们提到了CTC的一些重要属性。在这里,我们将更深入地了解这些属性是什么以及它们提供了什么样的权衡。

CTC的性质:

  1. 条件独立:CTC的一个非常不合理的假设是其假设每个时间片都是相互独立的,这是一个非常不好的假设。在OCR或者语音识别中,各个时间片之间是含有一些语义信息的,所以如果能够在CTC中加入语言模型的话效果应该会有提升。
  2. 单调对齐:CTC的另外一个约束是输入 𝑋 与输出 𝑌 之间的单调对齐,在OCR和语音识别中,这种约束是成立的。但是在一些场景中例如机器翻译,这个约束便无效了。
  3. 多对一映射:CTC的又一个约束是输入序列 𝑋 的长度大于标签数据 𝑌 的长度,但是对于 𝑌 的长度大于 𝑋 的长度的场景,CTC便失效了。

GPT-4o背后的语音技术

5月14日凌晨,OpenAI推出了最新的生成模型GPT-4o,带来了一系列震撼的功能,用技术彻底颠覆了产品形态。产品最大的亮点在于:以近乎完美的交互方式,为每位用户带来GPT-4级别的智能体验。在语音方面,GPT-4o做到了实时低延迟,平均响应时间与人类反应速度相当,输出的语音能够理解极度贴合对话上下文,能够理解人类的情感情绪,听觉质量上佳,与真人无异。

OpenAI的博客:https://openai.com/index/hello-gpt-4o/

GPT-4o是一个any2any的多模态模型,能够接受文本、音频、图像、视频等多模态输入,也能够生成包含文本、语音、图像和视频等混合内容的多模态输出。限于篇幅,本文主要谈谈语音多模态的实现,并分享一些对于语音研究未来发展的看法。

当我们主要关注文本和语音模态时,GPT-4o其实就是一个语音语言模型(speech language model, SLM)。该SLM同时具备语音理解能力和语音合成能力,输入端和输出端均支持文本和语音的混合多模态。那么,这一SLM应该如何实现呢?在大语言模型(large language model, LLM)滥觞的今日,不难想到这样一种方法:将连续的语音数据离散化成如同单词(或者称token,词元)一样的表示,并入到LLM的词表中,再走一遍训练LLM的老路。

基于上述思想来构建SLM,需要解决以下几个问题:

  1. 语音如何离散化?
  2. 如何让LLM理解语音的token?加入语音token之后,LLM在语音数据的理解上是否具有涌现性?
  3. LLM如何合成/解码语音?

接下来,我们按图索骥,分别看看上述三个问题应该如何解决。看完现有的方案之后,也会谈谈一些关于工程实现的思考以及新兴语音技术对于游戏业务的影响。最后,我会给出一个完整的roadmap来收束全文。

语音的离散化:向LLM看齐!

在谈及语音离散化之前,我们先来看看语音和文本作为两种不同的模态,有什么区别,有什么联系。这直接关系到后文建模方法的选择以及离散化特征的关注点。

语音和文本的差别主要体现在:文本离散、序列短、信息密度高(几乎每个词都包含语义);语音则连续、序列长、信息密度低。语音序列长、信息密度低的特点,意味着语音数据有很大的压缩空间,这一点和图像非常类似。因此,一些用于图像的离散化压缩方法也可以用在语音上。

除了差异,语音和文本也有一定的联系:语音是文本的超集,既包含文本内容(说话人说了什么,也就是语义信息),也包含语音特有的音色、韵律、语速等声学信息(也叫做副语言)。既然语音包含文本,那么在NLP中预训练语言模型也可以用来建模语音中的上下文依赖关系,从而得到语音的离散化token。基于这些方法得到的token主要包含语音的语义信息。

花开两朵,各表一枝。我们先来看看语音的语义token如何获取。

语义token:  用MLM建模语音的上下文依赖

语音的语义建模方法,最常用到的就是BERT的MLM方法,比较经典的工作有三个:wav2vec 2.0[1]、HuBERT[2]和w2v-BERT[3]。

类似于BERT,wav2vec 2.0[1]在隐空间(latent space)随机mask了一定比例的语音输入,然后用基于对比学习的训练目标学习帧的表征。值得注意的一点是,对比学习中目标帧的离散化处理是一个非常巧妙的操作,它将无限的连续特征空间坍缩为有限的离散空间,让帧特征的鲁棒性更强了。这在语音领域上非常有用的trick,允许模型接受带有噪声的语音作为输入。

图1:wav2vec 2.0的模型架构

wav2vec 2.0只是借用了BERT中mask的操作,训练目标大体上是基于对比学习的范式。那么,能直接用BERT的MLM建模目标来得到高质量的语音表征吗?其后的HuBERT[2]做的就是这个事情。HuBERT[2]的核心点在于使用简单的KMeans聚类方法为语音数据抽取离散化的分类标签,也就是文中所说的hidden unit/acoustic unit。有了分类标签,然后就是用BERT的MLM loss来学习语音数据中内在的上下文依赖关系。对于KMeans聚类对初始值和K值高灵敏的特点,作者设计了ensemble和iterative refinement方法予以解决。前者就是多个聚类模型ensemble,后者就是先在基于MFCC的聚类标签上进行学习,学习到一定程度时,在模型学习到的表征重新聚类,再做一次BERT的学习。

图2:HuBERT的模型架构

既然对比学习可以学习语音的语义表征,BERT的MLM也可以,那将二者结合起来,会不会有互补的效果呢?w2v-BERT[3]做的就是这个事情。注意到:HuBERT中语音的离散token不是端到端获得的,需要用KMeans算法对特征进行离线聚类,而wav2vec 2.0又正好提供了音频帧的量化离散表征,HuBERT和wav2vec 2.0很容易就能缝合在一起。缝合的方法也是显然的:前面若干层做类似wav2vec 2.0的对比学习,学习出HuBERT要用的离散表征,然后在后面若干层做类似HuBERT的MLM训练。

图3:w2v-BERT的模型架构

声学token:压缩+离散

上一部分介绍的预训练模型做的是上下文关系的预训练,学习到的表征主要包含与上下文相关的语义信息。要想将语音的token还原成为真正具有真人表现力的信号,还需要有包含音色、韵律、语速等副语言信息的声学特征。声学特征的学习在很大程度上参考了图像领域的工作,用到的主要是类似于VQVAE[4]、VQGAN等的离散化压缩方法,并针对语音数据的特性做了优化。这一部分比较经典的工作就是SoundStream[5]和Encodec[6],二者的工作高度类似,我们放在一起来看。

说到压缩,最先想到的模型当然就是AutoEncoder(自编码器)。为提升压缩效率,有利于数字传输和存储,以及离散化建模的要求,压缩模型中还需要包含量化(quantization),将连续的音频信号转换为离散的数值。基于上述考虑,模型大体上应该是VQVAE[4]的结构。为了平衡VQ(Vector Quantization,向量量化)与音频实时高保真传输的矛盾,通常采用多个残差连接的codebook来进行量化,这个就是所谓的RVQ(具体分析过程可以参见知乎文章)。采用RVQ的好处主要有两个:其一,区分不同quantization block的分工,第一个block包含最重要的语义信息,后续的block包含还原语音的副语言信息;第二,模型训练时可随机采样前面若干个block来训练,保持一定精度,实现对比特率的动态适应。

总而言之,SoundStream[5]/Encodec[6]其实就是一个RVQ-VAE,它们所建模的语音离散化token包含了层次化的语义信息和声学信息。

图4:Encodec的模型架构

语音的统一表征?

不难发现,虽然说SoundStream[5]和Encodec[6]这样的基于RVQ-VAE的压缩建模方法包含了语音的声学特征,但其中也不可避免地带入了语义特征。二者提取的实际上更像是一种语义特征和声学特征的混合体。基于此,SpeechTokenizer[7]在二者的基础上,引入了语义引导信息来解耦语义特征和声学特征。语义特征和声学特征的解耦对于最终的语音合成有着相当的重要性。SpeechTokenizer的具体做法是:使用HuBERT[2]的特征对RVQ1的特征做语义蒸馏,其余部分保留声学信息。

图5:SpeechTokenizer的模型架构


语音的其他表征:MEL依旧有用!

上述的语音离散表征,不管是基于HuBERT[2]的语义token,还是基于Encodec[6]的声学token,它们都是直接基于原始的音频波形抽取的。除此之外,也可以基于语音的中间表征来抽取。最典型的语音中间表征就是梅尔谱(MEL spectrogram,下文简称MEL)。梅尔谱本身就对语音进行了压缩,将梅尔谱类比于图像,使用单码本的VQ也可以达到与SoundStream和Encodec那样类似的压缩程度。这种MEL+VQ的做法在各种语音合成模型中也相当常见。我们在语音合成部分会详细介绍。

让LLM理解语音token!

有了上面所说的语义token和声学token之后,其实就可以利用它们来构建语音层面的语言模型了。比较经典的工作有:谷歌的AudioLM[8]和AudioPaLM[9]、字节的SALMONN[10]、复旦的SpeechGPT[11]/SpeechGPT-Gen[12]/SpeechAlign[13]、阿里的LauraGPT[14]和新加坡国立大学的NextGPT[15]。它们的做法其实都大差不差,我们看几个就知道是怎么回事了。

AudioLM:最初的SLM

见名知义,AudioLM[8]构建的是语音层面的语言模型——给定一段语音,模型预测后续的语音。输入侧和输出侧都只有语音模态。这个任务形式和GPT-4o非常类似,不会经历ASR->LM->TTS的过程,而是直接从语音上下文中推理语义信息,再结合声学信息合成贴合上下文的高表现力语音。而上文所述的语义token和声学token正好就能满足这个任务的要求。

AudioLM的具体做法是:用SoundStream[5]提取声学token,用w2v-BERT[3]提取语义token,模型主体就是一个常规的GPT,词表包含所有的声学token和语义token。它的建模过程也相当有意思,有很大的参考意义:先做最重要的语义建模,然后先预测SoundStream的前若干层特征,建模粗糙的声学特征,在预测SoundStream的剩余层特征,建模声音的细节信息,最后基于所有的声学token还原为语音。这种层次化的建模在诸如VALL-E[16]这样的语音合成模型中也非常常见。

图6:AudioLM的tokenizer

图7:AudioLM的建模流程

当然,AudioLM[8]仅仅关注语音模态,LM也很常规,不具备如同GPT-4o一样强悍的指令遵循能力和对话能力,语音对话的连贯性和表现力都相当弱。但这一工作仍然具有相当的启发性和开拓性,证明了:即使是常规的LM,照样也能理解语音token。

AudioPaLM[9]:整合LLM

这个就是AudioLM的后续了,谷歌将常规的LM替换成已经训练好的、具有强大文本理解能力和生成能力的大语言模型——PaLM-2[17],既继承了AudioLM保留副语言的能力,又融合了PaLM-2强大的语义理解能力和推理能力。而且,该模型的词表同时包含大语言模型的token和语音token,可以同时做语音理解任务和合成生成任务,第一将这些任务整合在一个模型中进行解决。

不过,需要指出地是,文中的语音token embedding是直接输入到Transformer中的,并没有使用音频编码器做一次转换。而且,AudioPaLM的训练更加接近文本多任务的T5,并未用到复杂的、丰富多样的指令来表达任务的意图,还不能算是真正严格的instruction fine-tuning。

图8:AudioPaLM的模型架构

SALMONN[10]:让LLM理解语音

这是字节跳动和清华大学电子系(也是我们实验室)的合作成果。虽然这个工作的目的是让LLM能够理解语音,还不能生成语音,但它的训练方法和LLM比较接近,而且在诸多语音相关的任务上都显示出了涌现性,可以用作universal的特征提取器,这对于构建高质量的、包含语音-文本多模态的指令微调数据集具有相当大的意义。

图9:SALMONN的模型架构

SpeechGPT/SpeechGPT-Gen/SpeechAlign:向LLM的训练方法看齐

这算是复旦大学邱锡鹏组在这个领域一个成系列的工作,我们一个一个来看。

SpeechGPT[11]做的也是兼具语音理解能力和语音生成能力的多模态模型。在模型的训练上,SpeechGPT大幅度向LLM看齐,使用了三段式的训练方法:第一阶段先做模态适应的预训练,其实就是拿ASR的语音数据来做预训练;第二阶段和第三阶段都是指令微调,不过根据指令模态的不同,细分为了跨模态的指令微调和模态链指令微调。指令微调的数据集都是来自ASR数据集。描述任务需求的指令由GPT-4生成。

在我看来,这个工作还是相当偏学术化的作品,文中有不少点都有值得商榷的地方:第一,语音的离散化仅仅用了HuBERT[2],模型只能看到语音的语义特征,这对模型合成语音的音质和表现力有非常大的影响,demo的语音也验证了我的判断;第二,指令微调数据集的构造上有问题。他们用的是ASR数据集,其实更好的选择应该是TTS数据集,可惜高质量的TTS数据集实在是太少了。ASR数据集中的文本和语音可能并不是严格对齐的,GPT-4产生的meta-prompt和语音本身的特征也有可能是对不上的,比如prompt要求大声朗读,但语音本身可能是特定低沉的。meta-prompt本身就无法做到足够复杂丰富,不能描述到语音的一些细粒度信息。

这一部分,最好要有像诸如SALMONN[10]这样的多模态语音理解模型的介入,像DALLE3一样丰富指令的多样性。至于语音方面,可以考虑引入zero-shot的语音合成模型或者变声模型来做合成数据。第三,文中的训练方法也没有与人类偏好做对齐。

图10:SpeechGPT的模型架构

对于上面的第一个问题,作者在其后的SpeechGPT-Gen[12]中做了解决。解决思路的核心点就是:让模型不仅看到语音的语义token,也要看到语音的声学token。具体做法是:SpeechGPT的HuBERT特征替换成了SpeechTokenizer[7]中的语义特征,用SpeechGPT这一LLM来自回归地建模语义特征,有了语义特征之后,再使用Flow-Matching这样的扩散模型来建模声学特征。这里选用Flow-Matching扩散模型,可能是受了SD3和Voicebox/Audiobox的影响。为了增强两阶段建模的依赖关系,作者将语义特征的先验信息注入到第二阶段扩散模型的先验分布中。可以看到,这里语音的解码其实也是一种层次化渐进式解码。

图11:SpeechGPT-Gen的模型架构

SpeechAlign[13]做的则是SLM与人类偏好的对齐,彻底地向LLM的训练方法看齐。该工作构建了对比gold token和合成token的encodec数据集,然后进行偏好优化来进行改进。使用的偏好优化方法包括RLHF和Chain of Hindsight。

图12:SpeechAlign的流程图

简单总结一下上面这些工作中值得关注的点:

  1. 要想让LLM输出上下文连贯的高表现力语音,必须要让LLM看到语义token和声学token,只有语义token,那语音就会显得呆板机械,只有声学token,那语音就不知所云;
  2. LLM的指令微调同样可以迁移到语音-文本多模态领域中,LLM的指令微调同样可以带来如同NLP一样的涌现性;
  3. 高质量指令微调数据集的构建应该是最大的瓶颈!一下子让LLM同时做语音理解和语音生成,难度非常大。不如分步进行。
  4. 如果要分步进行的话,要先实现一个类似于SALMONN[10]那样的多模态理解模型和一个强大的Zero-shot TTS模型。前者用于给语音数据打上丰富的标签,可以是情感情绪、韵律、音高、语速,也可以是口音、意图和说话环境;后者则用于生成高质量的语音数据。毕竟,高质量的、文本和语音严格对齐的TTS数据实在是太少了,尤其是中文领域。有了这两个模型的加持,我们其实就能够构造出高质量的指令微调数据集。我不知道OpenAI是否有SALMONN这样的模型,但OpenAI的OpenVoice模型应该足够为其提供高质量的语音数据了。

既然我们在上面的篇幅中论述了语音理解多模态模型的构建,那我们在下一部分就重点关注zero-shot TTS模型,它对高质量指令微调数据集的构建同样至关重要。同时,LLM解码语音的方法也能从zero-shot TTS方案中得到不少的启发。

LLM如何合成语音:Zero-shot TTS

前面说到,SLM词表中包含了语音的语义token和声学token。语义token保证生成语音与对话上下文的连贯性,声学token保证了合成语音的质量和表现力。要想做到合成上下文连贯的高自然度语音,有两个问题必须要解决:

  1. 语音既有语义token,又有声学token,应该要如何解码成语音?
  2. SLM在合成语音的过程中是否能够遵循多轮对话中的文本指令和语音指令?这个很重要!这允许模型根据用户的即时要求来生成语音回复。比如说,OpenAI演示视频中出现的:“将语速提高两倍”、“采用更加机械化的语气”这样的要求。

对于第一个问题,以VALL-E[16]为代表的诸多zero-shot TTS模型给出了不同的解决方案,这些方案虽有不同,但也有不可忽视的共同点;对于第二个问题,以VoiceLDM[18]和ParlerTTS[19]为代表的text/prompt-guided zero-shot TTS工作给出了肯定的答案。简单解释一下text/prompt-guided zero-shot TTS是怎么回事,通常的语音合成就是将文本(transcription)转换成声音,该任务在transcription之外,又增加了description的输入,来描述合成语音的情感情绪、口音、语气、语速、音高、说话环境、氛围等等信息。我们逐个来看这些工作。

Zero-shot TTS

2023年以来,学术界和工业界出了不少具备in-context learning(zero-shot/few-shot)能力的TTS模型。这些TTS模型通常会将低信息密度、长序列的连续语音数据压缩为高信息密度的tokens或者latents(其实就是码本中具体的token embedding)。这些模型本质上做的事情就是:如何高效实现语音tokens/latents到音频波形的映射。

这些模型给出的解决方案基本上都遵循一个准则:语义token和声学token层次化解码,先语义后声学,或者先解码成MEL再后接声码器,并且非必要不做自回归(毕竟自回归上线虽高,但太吃数据了)!我们一个个来看。

基于声学token或语义token的工作

先是微软的VALL-E[16]。这是zero-shot TTS的开山之作,首次在TTS任务上采用了上万小时的数据。它采用Encodec将语音转换为离散的token,然后用GPT在token上做语言模型的任务。但是,语音毕竟不是文本,如果直接在语音的所有特征上都做自回归的话,那训练的成本会相当高。考虑到Encodec RVQ特征的层次性,低层特征表示语义内容这样的重要特征,高层特征则表征声学细节。前者具有比较强的上下文依赖关系,适合用自回归来建模,后者诸如音色这样的特征,具有全局性,用非自回归特征也可以搞定,所以就有了VALLE中自回归+非自回归的层次建模方式。

图13:VALL-E的模型架构

尽管VALL-E[16]在用GPT建模token的上下文关系的时候,基于token的层次化特性做了分治处理,可能是限于当前语音数据集的规模(几万小时可能不够),这种GPT自回归的难度还是相当大的,解码过程存在常见的错误传播现象,鲁棒性非常差,极其不稳定。根据Ilya Sutskever此前对于自回归的论述,GPT自回归相比于BERT这种双向结构是非常data-hungry的,万小时的数据可能不够。根据本人以及一些同行的经验,VALL-E模型这一类的自回归模型,也包括tortoise-tts[20]和xtts v2,要想显出威力,至少要有十几万小时的数据才行。

既然GPT自回归的难度这么大,就有不少人想方设法地来降低GPT学习的难度了。他们的解决方案也非常类似:给GPT提供额外的条件信息不就行了。比较典型的工作就是微软的RALL-E[21]和吉利的HAM-TTS[22]。RALL-E先生成了时长信息和音高信息,作为GPT自回归的先验,之所以会补充时长和音高,这大概是受到FastSpeech2[23]这样的非自回归模型的启发,这两个指标的引入,有助于提升合成的鲁棒性;HAM-TTS则是补充了基于HuBERT的语义信息。值得注意地是,HAM-TTS将模型的训练数据扩充到了65万小时,其中有50万小时的数据是合成数据。合成数据也能大幅度提升合成语音的音质。

图14:RALL-E的模型架构,框出来的就是辅助信息

图15:HAM-TTS的模型架构

说到VALL-E的后续改进,VoiceCraft不得不提。我愿意称之为“优雅的VALL-E”。它的优雅主要体现在两个方面:casual masking和delayed stacking。所谓的causal masking,是为了用自回归GPT架构来做语音编辑任务,就是把被mask的部分移动到序列末尾去预测,一套架构同时做合成和编辑任务;所谓的delay stacking,是为了适配自回归和RVQ,通过delay错位让当前码本的token预测正好可以利用前面那些token的预测结果,比起VALL-E那样自回归和非自回归缝合在一起的结构要优雅不少。

图16:VoiceCraft的建模流程

基于声学/语义latents的工作

我们通常所说的语音token是离散的。如果使用对应码本中的embedding来表示语音的话,它也可以是连续的低维度的latent变量。既然是低维度的连续latent变量,那图像合成领域中大火的LDM(latent diffusion model,其实就是stable diffsion 1&2采用的模型)模型[]自然也可以用到语音的合成上。这方面的经典工作有很多,比如说:NaturalSpeech 2&3[25, 26]、AudioLDM 2[27]、VoiceLDM[18]。但这里面只有NaturalSpeech2用到了语音离散化部分提及的声学/语义token,NaturalSpeech3的属性分解形式的VQ更像是另一种形式的RVQ。我们先来看NaturalSpeech 2&3,其他的工作后面再来看。

首先是NaturalSpeech 2[26],它基本上就是VALL-E的连续版本。它用的latent也是来自Encodec,对其中不同层次的latent做了求和,然后将其作为扩散模型的训练目标。值得注意地是,扩散模型和FastSpeech2一样也用了时长和音高作为合成的先验条件。这一点也被后来的RALL-E采用。该工作中的扩散模型采用WaveNet实现,同时预测不加噪的latent和后验均值,和图像合成领域的扩散模型在实现方式上还是有所不同的。

图17:NaturalSpeech2的模型架构

然后是NaturalSpeech 3[26],还是非自回归的,而且非自回归的正统性味道更加浓厚,借用了不少FastSpeech2和megatts1&2(后面会讲)[27, 28]的设计思想。像megatts 1&2一样,同样采用(自)监督信号对语音token编码的内容做了限制,而不再像是VALL-E/NaturalSpeech2那样一把抓。相应地,语音token化的方法也用VQ就行。具体而言,文章将语音信号分解为时长、内容、韵律和细节四个部分,然后每个部分用离散化的扩散模型来建模。不过,原文使用GRL来促进语音属性的分解,这一点的靠谱程度存疑。我也尝试过文章的FACodec,但效果很差。三级扩散模型级联的结构,预测起来似乎也非常麻烦。

图18:NaturalSpeech3的模型架构

基于MEL谱+VQ的TOKEN的工作

当然,也有不少工作用了MEL谱作为中间特征,然后在梅尔谱的基础上,或是用VQ提供离散token,或是用CNN来提取连续latent。对于MEL+VQ的工作,有tortoise-tts[20]、xtts 1&2、megatts1&2[28, 29]、base TTS[30]。对于MEL+latents的工作,有:AudioLDM 1&2[27]、StyleTTS 1&2[31, 32]。我们来简单看看是它们是怎么做的。

Tortoise-tts[20]。该工作是著名的开源英文TTS模型。其作者目前在OpenAI就职,同时也是GPT-4o的重要Contributor(他自个儿在博客中说的)。Tortoise-tts使用MEL+VQVAE的方法得到语音的MEL token,然后对MEL token以及text token做GPT自回归建模。对于语音的解码,自然也是分为两步:先是用扩散模型将MEL token转换为MEL谱,这一步和文生图很像,用扩散模型是很自然的选择;然后用声码器将MEL谱转换为音频波形。tortoise-tts和VALL-E的主体都是自回归建模,二者的不同主要在于token的不同。

图19:tortoise-tts的模型架构

MegaTTS 1&2[28, 29]。字节跳动的MegaTTS系列对语音token编码信息做了显式的信息压缩处理,让语音token仅编码上下文依赖强的韵律信息,然后用GPT自回归来建模语音的韵律。对于其他方面的信息,模型的处理显得较为常规:音色一般具有全局性,使用单一的音色编码器从参考音频中提取就性;对于文本语义内容的处理,模型在很大程度上参考了非自回归的FastSpeech 2。

对于语音的解码,也是分为两步:先通过MEL decoder还原为MEL谱,然后通过声码器解码为音频波形。MegaTTS 2和1总体上类似,在音色编码(音素级编码、多条参考音频)、语音提示长度(扩展同speaker语音上下文长度硬train,音频prompt长度更长)和时长建模(也用GPT自回归)上做了改进,同时堆了更大规模的数据。剪映的后端TTS模型用的就是megatts2。该工作在各论文的评测中表现也都不错。

图20:megatts1的模型架构

基于MEL谱+VAE的latents的工作

AudioLDM 1&2[27]。AudioLDM 1&2使用的语音latents是一致的,均通过MEL+VAE获得。既然是连续的latents,使用扩散模型来建模也合情合理。解码过程也相当简单:VAE decoder获得梅尔谱,然后用声码器转换为音频波形。该系列工作的核心创新点是利用多模态模型统一了扩散模型条件输入侧的信息:AudioLDM 1用CLAP统一了文本模态和音频模态,用单模态的音频数据就能完成模型的训练;AudioLDM 2则包含了图像、文本、转录文本等更多模态,模型泛用性也更强,既能做语音合成,也能做音乐生成、音频事件生成。

图21:AudioLDM 1的模型架构

图22:AudioLDM2的模型架构

StyleTTS 1&2[31, 32]。StyleTTS系列的模型一众zero-shot TTS模型显得比较老派,整体结构基本上沿袭了非自回归的FastSpeech 2,不同之处在于增加了基于参考音频抽取的风格信息。说是风格,其实跟megatts的音色很像。StyleTTS 2的工作则将风格进一步拆分成声学风格和韵律风格。训练时的风格信息由音频提供,推断时的风格信息则由扩散模型提供。StyleTTS 2通过一个扩散模型桥接了文本韵律和语音风格之间的联系,摆脱推断时对参考音频的依赖。不用参考音频其实对产品的意义还挺大的,要都用现实世界中真人尤其是名人的声音作为参考音频,那这势必会引起版权纠纷。这种纠纷在国内国外都有相关的事件。最近寡姐投诉OpenAI的事件就是一例。

图23:StyleTTS 1的模型架构

图24:StyleTTS 2的模型架构

TTS对指令的遵循

SLM不仅要合成合乎上下文语义的高表现力语音,合成的语音还要符合用户的即时要求。一些text-guided zero-shot TTS的工作值得参考。这些工作一般都是在已有的zero-shot TTS模型或者text-to-audio模型上改造而来,同时吸收transcription和description两路条件。其中的重点还是在于数据集的构建。这方面的工作有:PromptTTS[33]、InstructTTS[34]、ParlerTTS[19]、VoiceLDM[18]和Audiobox[35]。我们主要谈谈ParlerTTS和VoiceLDM。

ParlerTTS[19]。VALL-E/VoiceCraft的增强版,通过T5编码器和cross-attention旁路引入了描述性文本的信息。该工作的目的是想使用自然语言prompt来指定说话风格和环境信息,摆脱对参考音频的依赖。描述性标签文本的收集过程也显得相当朴素:通过定制化的监督式模型获取语音数据的口音特征、录音质量特征、音高语速特征。然后用LLM将这些特征转换为自然语言的描述。在我看来,这个工作有这么几点局限性吧:其一,缺乏情绪标签;其二,语音描述性标签的收集并不具备通用性,较为繁琐,远不如一个强大的多模态语音理解模型来得实在。文章demo虽然达到了预期的效果,但场景似乎局限在朗读的情景中。

图25:ParlerTTS的模型架构

VoiceLDM[18]。在VoiceLDM1的基础上增加了转录文本的输入。这个工作和AudioLDM 1很像,同样使用CLAP注入语音的描述性信息。不同地是,为了做TTS任务,该工作通过cross-attention旁路增加了transcription的信息。

图26:VoiceLDM的模型架构

TTS总结

林林总总说了这么多zero-shot的TTS方法,我想说明的结论有这么几点:

  1. 在LLM大行其道、scaling law大显神威的时代,TTS模型的训练数据规模已经突破了万小时,甚至达到了数十万小时的级别。在大数据的加持下,TTS任务上也涌现出了in-context learning能力。
  2. 语音信息的解码通常都要层次化或者多步进行,不能一步到位。自回归、扩散模型和流匹配都能在TTS中发挥作用;
  3. 借鉴NLP instruction fine-tuning和文生图的经验,TTS模型同样可以遵循文本指令或者语音指令,合成符合用户即时要求的语音,摆脱对参考音频的依赖,这或许也能规避一些知识产权的困扰(比如最近有名的寡姐投诉OpenAI事件)。同时,用户也能在对话过程中随时切换语音回复的风格,这一点在OpenAI的demo中有很明确的体现。另外,不知道大家有没有注意,GPT-4o合成的语音是可以是放映所处的声学环境的:有一段语音背后似乎是有钢琴声的。
  4. text-guided zero-shot TTS在模型架构上和zero-shot TTS有非常大的相似性。但训练数据可能较为缺乏。先开发zero-shot TTS,再用类似SALMONN那样的多模态理解模型来打标签(类似DALLE3的做法),这样数据集构造方式,可能会是更好的选择。

另外,对于语音的解码方案,我倾向于是这样的:

  1. 如果要做流式推理,外接类似HIFIGAN这样的声码器的方式可能不是好的选择。HIFIGAN并不天然支持流式解码。相反地,诸如SoundStream和Encodec这样的方法,同时有流式变体和非流式变体;
  2. 先做语义token的解码,这个解码大概率是自回归解码。语义token毕竟是建模上下文依赖关系,自回归方法已经在NLP上证明了这一点;
  3. 然后做声学token的解码,扩散或者flow-matching可能是更好的选择。扩散模型或者流匹配可以很好地修补语音的细节;

当然,除了上面讲到的,zero-shot TTS还有很多值得研究的方法。限于篇幅,仅列举于此,不再详述:HierSpeech++[36]、base TTS[30]、Voicebox/Audiobox[35]、UniAudio[37]、Make-a-Voice[38]等等。

其他问题

对于GPT-4o模型,如果仅仅聚焦于语音多模态,还有下面的问题值得关注:

  1. 语音交互如何做到低延迟?大概率要求流式切片处理,主要工作在于工程优化,用C++重写算子。推理框架的话,用tensorrt、mnn这些都行。上下文所述的音频离散化方法,诸如SoundStream和Encodec,其实也支持流式处理。
  2. 语音对话中的打断如何实现?个人认为有两种可能的方案:turn-based和流式处理。所谓的turn-based方案,是比较工程化的,简答概括一下就是:检测是否有停顿,如果一段时间内没有声音,模型就开始返回语音回复。另一种流式方案,则是:模型一直在接受用户的流式语音输入,判断是否应该输出语音回复,一个充分训练的模型应该是能够准确预测出语音词表中的[START]和[END]的。

对游戏配音业务的思考

text/prompt-guided zero-shot TTS方法对游戏的AI配音意义重大。主要体现在:

  1. 用自然语言提示去合成音色稳定的语音,摆脱对参考音频的依赖,在业务中能够更加灵活,至少比克隆已有人物/角色的语音的方式更加方便,更不容易出戏。举个例子,在开放世界剧情类游戏的研发阶段,我们会设定一些profile赋予NPC,让玩家跟NPC聊天。我们曾经用克隆《原神》、《崩坏:星穹铁道》已有角色的方式赋予这些NPC角色语音,但放在那些欧美背景的NPC中,就是很有违和感,没有现实世界中的accent,不够decent。
  2. 剧情任务中的配音会更加真人化、更有沉浸感。过年期间过《崩坏:星穹铁道》花火和黑天鹅的同行任务的时候,部分NPC角色会有六公主的翻译腔,这是花火行于欢愉命途的恶趣味,空气中顿时充满了快活的味道。如果走bv2、gsv的语音克隆方案,应该是很难有这种效果的。而且,玩家在剧情任务中势必会经过不同的地势地貌,至少室内、室外的声音听起来是有不同的。室内的声音至少会有回响、混响的吧。这种感觉语音克隆方案也是无法做到的。

全文总结

总结一下本文说谈的内容,我认为GPT-4o语音多模态的实现可能是走了以下的技术路线:

  1. audio & text tokenizer的实现应该是语音离散化部分所用的技术,例如SoundStream、Encodec、SpeechTokenizer,或者是MEL+VQ最后配合声码器来解码;参考zero-shot TTS、AudioLM/AudioPaLM、SpeechGPT-Gen等工作的结果,LLM中语音token的解码应该是要走层次化或者多步的方法,先解码语义特征,再解码声学特征,或者是先解码MEL,再加一个HIFIGAN这样的声码器。另外,如果做audio/speech/music这样的通用声合成的话,可能也能通过prompt来控制。AudioLDM2虽然做了这方面的工作,但audio/music和speech的参数其实是不一样的,说到底还不是同一个模型。
  2. 对于指令微调,数据集的构造非常重要,大概率要用到合成数据。其一,网络上高质量语音数据的量级远远不及文本,直接拿ASR数据来做肯定会影响模型合成语音的音质;其二,大语言模型合成的instruction往往触及不到语音的细粒度特征,这样的instruction其实无法准确详尽地描述text和speech之间的关系。因而,需要引入强大的zero-shot TTS模型合成高质量语音,然后用多模态语音理解模型来为合成语音打标签,当然也可以评分做筛选什么的。
  3. 最后是要让大模型的输出对齐人类的偏好。这方面的方法有很多,有DPO、PPO什么的,都可以用。

图27:全文总结,可能的roadmap

参考文献

[1] Baevski A, Zhou Y, Mohamed A, et al. wav2vec 2.0: A framework for self-supervised learning of speech representations[J]. Advances in neural information processing systems, 2020, 33: 12449-12460.

[2] Hsu W N, Bolte B, Tsai Y H H, et al. Hubert: Self-supervised speech representation learning by masked prediction of hidden units[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3451-3460.

[3] Chung Y A, Zhang Y, Han W, et al. W2v-bert: Combining contrastive learning and masked language modeling for self-supervised speech pre-training[C]//2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2021: 244-250.

[4] Van Den Oord A, Vinyals O. Neural discrete representation learning[J]. Advances in neural information processing systems, 2017, 30.

[5] Zeghidour N, Luebs A, Omran A, et al. Soundstream: An end-to-end neural audio codec[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 30: 495-507.

[6] Défossez A, Copet J, Synnaeve G, et al. High fidelity neural audio compression[J]. arXiv preprint arXiv:2210.13438, 2022.

[7] Zhang X, Zhang D, Li S, et al. Speechtokenizer: Unified speech tokenizer for speech large language models[J]. arXiv preprint arXiv:2308.16692, 2023.

[8] Borsos Z, Marinier R, Vincent D, et al. Audiolm: a language modeling approach to audio generation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.

[9] Rubenstein P K, Asawaroengchai C, Nguyen D D, et al. Audiopalm: A large language model that can speak and listen[J]. arXiv preprint arXiv:2306.12925, 2023.

[10] Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, Chao Zhang. SALMONN: Towards Generic Hearing Abilities for Large Language Models

[11] Zhang D, Li S, Zhang X, et al. Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities[J]. arXiv preprint arXiv:2305.11000, 2023.

[12] Zhang D, Zhang X, Zhan J, et al. SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation[J]. arXiv preprint arXiv:2401.13527, 2024.

[13] Zhang D, Li Z, Li S, et al. SpeechAlign: Aligning Speech Generation to Human Preferences[J]. arXiv preprint arXiv:2404.05600, 2024.

[14] Chen Q, Chu Y, Gao Z, et al. Lauragpt: Listen, attend, understand, and regenerate audio with gpt[J]. arXiv preprint arXiv:2310.04673, 2023.

[15] Wu S, Fei H, Qu L, et al. Next-gpt: Any-to-any multimodal llm[J]. arXiv preprint arXiv:2309.05519, 2023.

[16] Wang C, Chen S, Wu Y, et al. Neural codec language models are zero-shot text to speech synthesizers[J]. arXiv preprint arXiv:2301.02111, 2023.

[17] Anil R, Dai A M, Firat O, et al. Palm 2 technical report[J]. arXiv preprint arXiv:2305.10403, 2023.

[18] Lee Y, Yeon I, Nam J, et al. VoiceLDM: Text-to-Speech with Environmental Context[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 12566-12571.

[19] Lyth D, King S. Natural language guidance of high-fidelity text-to-speech with synthetic annotations[J]. arXiv preprint arXiv:2402.01912, 2024.

[20] Betker J. Better speech synthesis through scaling[J]. arXiv preprint arXiv:2305.07243, 2023.

[21] Xin D, Tan X, Shen K, et al. RALL-E: Robust Codec Language Modeling with Chain-of-Thought Prompting for Text-to-Speech Synthesis[J]. arXiv preprint arXiv:2404.03204, 2024.

[22] Wang C, Zeng C, Zhang B, et al. HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling[J]. arXiv preprint arXiv:2403.05989, 2024.

[23] Ren Y, Hu C, Tan X, et al. Fastspeech 2: Fast and high-quality end-to-end text to speech[J]. arXiv preprint arXiv:2006.04558, 2020.

[24] Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-10695.

[25] Shen K, Ju Z, Tan X, et al. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers[J]. arXiv preprint arXiv:2304.09116, 2023.

[26] Ju Z, Wang Y, Shen K, et al. NaturalSpeech 3: Zero-shot speech synthesis with factorized codec and diffusion models[J]. arXiv preprint arXiv:2403.03100, 2024.

[27] Liu H, Tian Q, Yuan Y, et al. AudioLDM 2: Learning holistic audio generation with self-supervised pretraining[J]. arXiv preprint arXiv:2308.05734, 2023.

[28] Jiang Z, Ren Y, Ye Z, et al. Mega-tts: Zero-shot text-to-speech at scale with intrinsic inductive bias[J]. arXiv preprint arXiv:2306.03509, 2023.

[29] Jiang Z, Liu J, Ren Y, et al. Mega-tts 2: Zero-shot text-to-speech with arbitrary length speech prompts[J]. arXiv preprint arXiv:2307.07218, 2023.

[30] Łajszczak M, Cámbara G, Li Y, et al. BASE TTS: Lessons from building a billion-parameter text-to-speech model on 100K hours of data[J]. arXiv preprint arXiv:2402.08093, 2024.

[31] Li Y A, Han C, Mesgarani N. Styletts: A style-based generative model for natural and diverse text-to-speech synthesis[J]. arXiv preprint arXiv:2205.15439, 2022.

[32] Li Y A, Han C, Raghavan V, et al. Styletts 2: Towards human-level text-to-speech through style diffusion and adversarial training with large speech language models[J]. Advances in Neural Information Processing Systems, 2024, 36.

[33] Guo Z, Leng Y, Wu Y, et al. Prompttts: Controllable text-to-speech with text descriptions[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.

[34] Yang D, Liu S, Huang R, et al. Instructtts: Modelling expressive TTS in discrete latent space with natural language style prompt[J]. arXiv preprint arXiv:2301.13662, 2023.

[35] Vyas A, Shi B, Le M, et al. Audiobox: Unified audio generation with natural language prompts[J]. arXiv preprint arXiv:2312.15821, 2023.

[36] Lee S H, Choi H Y, Kim S B, et al. HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis[J]. arXiv preprint arXiv:2311.12454, 2023.

[37] Yang D, Tian J, Tan X, et al. Uniaudio: An audio foundation model toward universal audio generation[J]. arXiv preprint arXiv:2310.00704, 2023.

[38] Huang R, Zhang C, Wang Y, et al. Make-a-voice: Unified voice synthesis with discrete representation[J]. arXiv preprint arXiv:2305.19269, 2023.

FunAudioLLM –阿里通义音频生成大模型

FunAudioLLM:https://github.com/FunAudioLLM
CosyVoice开源仓库:https://github.com/FunAudioLLM/CosyVoice
CosyVoice在线体验:https://www.modelscope.cn/studios/iic/CosyVoice-300M
SenseVoice开源仓库:https://github.com/FunAudioLLM/SenseVoice
SenseVoice在线体验:https://www.modelscope.cn/studios/iic/SenseVoice

人类对自身的研究和模仿由来已久,在我国2000多年前的《列子·汤问》里就描述了有能工巧匠制作出会说话会舞动的类人机器人的故事。声音包含丰富的个体特征及情感情绪信息,对话作为人类最常使用亲切自然的交互模式,是连接人与智能世界至关重要的环节。近日,阿里通义实验室发布并开源了语音大模型项目FunAudioLLM,旨在深化人类与大型语言模型(LLMs)之间的自然语音交互体验。这一框架的核心是两个创新模型:SenseVoiceCosyVoice

CosyVoice【TTS】 致力于自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。

  • 多语言合成:采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。
  • 极速音色模拟:仅需要3~10s的原始音频,即可生成模拟音色,甚至包括韵律、情感等细节。在跨语种的语音合成中,也有不俗的表现。
  • 富文本或自然语言的细粒度控制:支持以富文本或自然语言的形式,对合成语音的情感、韵律进行细粒度的控制,合成音频在情感表现力上得到明显提升。

SenseVoice 则专注于高精度多语言语音识别ASR、情感辨识和音频事件检测。

  • 多语言识别:采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型,中文与粤语上提升50%以上。
  • 富文本识别:
    • 具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
    • 支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。
  • 推理速度:SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-large。

应用场景

基于SenseVoice和CosyVoice模型,FunAudioLLM可支持较多的人机交互应用场景,例如音色情感生成的多语言语音翻译、情绪语音对话、互动播客、有声读物等。

同音交传:模拟音色与情感的多语言翻译

通过结合SenseVoice、LLMs以及CosyVoice,我们可以无缝地进行语音到语音的翻译(S2ST)。需要注意的是,原始录音在文本中会以粗体显示。这种集成化的方法不仅提升了翻译的效率和流畅性,而且通过感知语音中的情感和语调,它能够在译文中复现原始语音的情感色彩,让对话的交流更加真实和动人。

无论是多语种的会议通译、跨文化的交流沟通,还是为非母语者提供即时语音翻译服务,这一技术都将大大缩小语言差距和沟通中的信息减损。

强情感交互的语音对话

通过融合SenseVoice、大型语言模型(LLMs)和CosyVoice,能够支持开发一款情感语音聊天应用程序。

当SenseVoice解析出情绪/情感/咳嗽等副语言信息后,大模型输出相对应的反馈情绪,并由CosyVoice合成出适当的声音情绪,从而完成舒适自然的对话交互过程。在以下示例中,用户和助手的所有对话内容均由CosyVoice合成。

专属AI博客电台

通过将SenseVoice、基于LLM的具有实时世界知识的多代理系统和CosyVoice整合,我们能够创造一个互动式播客电台。

在这样的播客中,SenseVoice利用其高精度多语言语音识别功能,实时捕捉AI播客和用户的对话,甚至能够辨识环境音效和情感。LLM多代理系统则能够处理SenseVoice提供的语音数据,实时更新世界知识库,确保话题和信息的及时性和准确性。

在交互中,用户可以随时打断AI播客的对话,引导主题方向等,CosyVoice将用于生成AI播客的语音,具备多种语言、音色和情感的控制能力,为听众带来丰富多彩的听觉体验。

有声读物

借助LLMs出色的分析能力,可对书籍内容进行结构化并识别其中的情感,再与CosyVoice的语音合成技术结合,我们能够实现具有更高表现力的有声读物。

LLMs深入理解文本,捕捉每一个情感波动和故事弧线,而CosyVoice则将这些情感细腻地转化为语音,带有特定的情绪色彩和强调,为听众提供一个不仅丰富多彩而且情感充沛的听觉体验。

这样的有声读物不再是单一无变化的朗读,而是一场充满情感与生动表达的听觉盛宴,让每个故事和角色都栩栩如生。

技术原理解析

CosyVoice

CosyVoice是一款基于语音量化编码的语音生成大模型。它对语音进行离散化编码,并依托大模型技术,实现自然流畅的语音生成体验。与传统语音生成技术相比,CosyVoice具有韵律自然、音色逼真等特点。CosyVoice支持多达5种语言,同时还支持以自然语言或富文本形式对生成语音进行情感等维度的细粒度控制。研究团队提供了基模型CosyVoice-300M、经过SFT微调后的模型CosyVoice-300M-SFT、以及支持细粒度控制的模型CosyVoice-300M-Instruct,可满足不同场景下的使用需求。

生成语音客观指标:

研究团队分别在开源中文数据集Aishell3以及英文数据集LibriTTS上,通过语音识别测试了合成音频的内容一致性。通过与原始音频以及最近大火的ChatTTS对比,可以发现CosyVoice的合成音频在内容一致性上更高,并且没有很少存在幻觉额外多字的现象。CosyVoice很好地建模了合成文本中的语义信息,达到了与人类发音人相当的水平。此外,通过对合成音频进行重打分,能够进一步降低识别的错误率,甚至在内容一致性和说话人相似度上超越人类。

情感控制能力:

研究团队还使用预训练的情感分类模型评价了CosyVoice的情感控制能力,主要包括高兴/悲伤/生气/害怕/反感等5种高表现力的语音情感。
测试结果表明,CosyVoice-300M本身具备一定从文本内容中推断情感的能力,经过细粒度控制训练的模型CosyVoice-300M-Instruct在情感分类中的得分更高,具备更强的情感控制能力。

SenseVoice

SenseVoice是一个基础语音理解模型,具备多种语音理解能力,涵盖了自动语音识别(ASR)、语言识别(LID)、情感识别(SER)以及音频事件检测(AED)。

该模型旨在提供全面的语音处理功能,从而支持构建更复杂的语音交互系统。

SenseVoice-Small是一款仅含编码器的轻量级基础语音模型,设计用于快速语音理解。

它可以快速处理语音数据,并在有需要时迅速做出响应,适用于对延迟敏感的应用场合,如实时语音交互系统。SenseVoice-Large则是一个包含编码器和解码器的大型基础语音模型。这个版本的SenseVoice专注于更精确的语音理解,拥有对更多语言的支持能力。它适合于对识别精度有更高要求的场景,可以处理更复杂的语音输入,并生成更为准确的结果。

多语言语音识别性能

研究团队在开放源数据集上比较了SenseVoice和Whisper的多语言识别性能和推理效率,包括AISHELL-1、AISHELL-2、Wenetspeech、Librispeech和Common Voice。

推理效率评估是在A800机器上进行的。SenseVoice-Small采用非自回归端到端架构,由此带来的推理延迟极低——相比之下,它比Whisper-Small快7倍,比Whisper-Large快17倍。

语音情感识别性能

SenseVoice也可以用于离散情绪识别,目前支持的情绪类型包括高兴、悲伤、愤怒和中性。团队在7个流行的情绪识别数据集上对其进行了评估。即使没有对目标语料库进行微调,SenseVoice-Large都能在大多数数据集上达到或超越最新的最佳结果(SOTA)。

音频事件检测性能

SenseVoice-Small与SenseVoice-Large模型都能在语音中检测音频事件,包括音乐、掌声和笑声。

SenseVoice-Large模型除了能够预测音频事件的类型,还能精准识别事件发生的起始和结束位置。

与之相比,SenseVoice-Small模型虽然仅能预测音频中发生的事件类型(仅限于一个事件),但它能够检测到更多种类的事件,诸如在人机互动过程中可能出现的咳嗽、打喷嚏、呼吸和哭泣等。

目前,与SenseVoice和CosyVoice相关的模型已在ModelScope和Huggingface上开源,同时在GitHub上发布了相应的训练、推理和微调代码。

OpenAI 开源语音识别模型 Whisper & 相关应用

Robust Speech Recognition via Large-Scale Weak Supervision

https://github.com/openai/whisper

Blog:https://openai.com/blog/whisper/

论文精度

OpenAI Whisper 

拥有 GTP-3 语言模型,并为 GitHub Copilot 提供技术支持的人工智能公司 OpenAI 近日开源了 Whisper 自动语音识别系统,Open AI 强调 Whisper 的语音识别能力已达到人类水准。

Whisper 是一个自动语音识别(ASR,Automatic Speech Recognition)系统(transformer模型),OpenAI 通过从网络上收集了 68 万小时的多语言(98 种语言)和多任务(multitask)监督数据对 Whisper 进行了训练。OpenAI 认为使用这样一个庞大而多样的数据集,可以提高对口音、背景噪音和技术术语的识别能力。除了可以用于语音识别,Whisper 还能实现多种语言的转录,以及将这些语言翻译成英语。OpenAI 开放模型和推理代码,希望开发者可以将 Whisper 作为建立有用的应用程序和进一步研究语音处理技术的基础。

Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection

Whisper 执行操作的大致过程:

输入的音频被分割成 30 秒的小段、转换为 log-Mel 频谱图,然后传递到编码器。解码器经过训练以预测相应的文字说明,并与特殊的标记进行混合,这些标记指导单一模型执行诸如语言识别、短语级别的时间戳、多语言语音转录和语音翻译等任务。

相比目前市面上的其他现有方法,它们通常使用较小的、更紧密配对的「音频 – 文本」训练数据集,或使用广泛但无监督的音频预训练集。因为 Whisper 是在一个大型和多样化的数据集上训练的,而没有针对任何特定的数据集进行微调,虽然它没有击败专攻 LibriSpeech 性能的模型(著名的语音识别基准测试),然而在许多不同的数据集上测量 Whisper 的 Zero-shot(不需要对新数据集重新训练,就能得到很好的结果)性能时,研究人员发现它比那些模型要稳健得多,犯的错误要少 50%。

目前 Whisper 有 9 种模型(分为纯英文和多语言),其中四种只有英文版本,开发者可以根据需求在速度和准确性之间进行权衡,以下是现有模型的大小,及其内存要求和相对速度:

Whisper的表现因语言而异。下图显示了使用largeV2模型使用Fleurs数据集的语言进行细分。

论文:稳健的语音识别通过大规模的弱监督

弱监督的意思是指我们的语音数据是有标号的,但是标号的可行度不是那么高,质量一般这也是,这也是作者能够采集到近70万h的数据的原因。(在样本数量和质量之间做权衡)

摘要

我们研究了互联网上的大量的训练好的的语音处理系统的功能。当把我们的数据集扩大到680,000小时,且是一个多语言和多任务监督训练时,最终的模型可以与在标准数据集训练好的其他模型相比具有相同的效果,但whisper无需进行任何微调,在面对新数据集时候无需微调。与人类相比,模型具有准确性和鲁棒性。我们正在发布模型和推理代码,以作为在强大语音处理上进一步工作的基础。

引言

目前主流的语音识别方法是先进行大规模的无监督预训练(Wav2Vec 2.0),比如, Wav2Vec 采集了1000000h的无标签训练数据,先用这些数据进行预训练一个编码器(使用对比学习 or 字训练),encoder能够对语音数据做一个很好的编码,然后在面向下游任务时,可以在标准训练集中做微调(只需要几十小时的数据就可),这样比只在标准数据集上训练的结果好很多。

这些预训练好的语音编码器能够学习到语音的一个高质量表示,但是用无监督方法训练的编码器仍然需要训练一个解码器,需要用带标签的数据来微调,微调是一个很复杂的过程,如果不需要微调就好了,这也是本文要做的工作。此外,过去的工作缺乏一个很好的解码器,这是一个巨大的缺陷,而语音识别系统就是应该是“out of box”,也就是拿来即用。

有监督学习很多方法是把多个有监督的数据集合并成一个大的数据集,这样确实保证比在单个数据集上的准确性和泛化性都要好,但是之前的工作最多也就是5000h的数据集,跟之前的100万h的无监督数据集相比差的太多。

顺着这个思路,如果我们把数据集的标号放松一下,就会获得个更多的数据集。在数量和质量之间做权衡是一个不错的选择,比如在yutube上采集视频和字幕作为数据集,为了追求样本的多样性和数量,稍微降低一点质量也是可以的。因此本文就是把弱监督数据集扩展到了68万h,并将模型取名whisper.

方法

数据处理:不需要对标号做任何后处理。从互联网中采集到的数据多种多样,比如声音的环境、录制的设备、说话的人、语言。这样让模型更加稳健,但是对应的我们希望标号质量应该要一致,因此需要做一个过滤系统,把一些质量差的文本删除(一般是一些机器自动生成的文本,如果使用其作为标号,那训练出来的模型效果也不会很好)、去重等等。训练数据30s以及对应的标号作为一个样本。

数据部分是本文最核心的贡献。由于数据够多,模型够强,本文模型直接预测原始文本,而不经过任何标准化(standardization)。从而模型的输出就是最终识别结果,而无需经过反向的文本归一化(inverse text normalization)后处理。所谓文本归一化包括如将所有单词变小写,所有简写展开,所有标点去掉等操作,而反向文本归一化就是上述操作的反过程。在 Whisper 中,这些操作统统不用,因为数据足够多,可以覆盖所有的情况。

在本文收集的语音数据中,包含了不同环境、不同语言、不同说话人等多样的数据,这有助于训练出文件的语音识别系统。然而,文本标签的多样性对模型的学习是一种阻碍。为了解决这个问题,本文使用了几种自动过滤方法,来提高文本标签的质量。

  • 首先,收集自互联网的语音识别数据,很有可能文本标签就是来自现有的语音识别系统的识别结果。之前有研究工作表明,在训练数据中混有机器生成的标签数据会损害模型的性能。为此,本文根据机器识别结果的一些特点,过滤掉了这些数据
  • 另外,本文对数据中语音所属语言和文本所属语言进行检测。如果文本是非英语的其他语言,则要求语音也必须是同种语言;如果文本是英语,则语音可以是任何语言(因为本文方法中有一个其他语言到英语的翻译任务)。
  • 本文用一个语音识别模型在收集的数据上进行测试,发现在一些错误率极高的数据中,存在音频信息不完整、字幕声音不匹配等低质量数据,这些数据同样会被过滤掉。

另外,可能在收集的数据中含有标准语音识别数据集中的内容,为了避免对测试结果产生影响,这部分数据同样需要去掉。

最后,将音频切分为 30s 的片段,配上对应文本,得到训练数据。

2、模型

由于我们的工作重点是研究大规模监督预训练的语音识别能力,因此我们使用现成的架构来避免将我们的发现与模型改进混淆。具体来说就是使用最原始的encoder-decoder Transformer (Vaswani et al., 2017)模型作为网络。将所有音频重新采样至16,000 Hz,80通道的Mel频谱图表示,其步幅为10毫秒。对于特征归一化,我们将输入归一化到-1和1之间,整个训练数据集的平均值约为零。

输入(80*3000)在送入transformer之前先经过卷积层(kernel=3),主要是考虑卷积具有局部相关性,输出80*1500,降低维度。剩下的部分就是一个经典 transformer 架构。

Whisper 使用的模型改动不大,就是 Transformer 第一次提出时的 encoder-decoder 架构。Whisper 的入出侧是声音信号,声音信号的预处理是将音频文件重采样到 16000 Hz,并计算出 80 通道的梅尔频谱,计算时窗口大小为 25ms,步长为 10ms。然后将数值归一化到 -1 到 1 之间,作为输入数据。可以认为是对于每一个时间点,提取了一个 80 维的特征。之前数据处理部分提到每个音频悲切氛围 30s 的片段,这里步长为 10,所以每 30 秒有 3000 个时间点。综上,对于一个 30 秒的音频数据,我们提取到形状为 3000×80 的特征。对应到 NLP 中,可以理解为句子长度为 3000,每个词的词嵌入维度为 80

3000×80 的输入数据首先通过两个 1D 卷积层,得到 1500×80 的特征。后面的处理就是标准的 Transformer encoder-decoder结构了。将这个特征送入到 Transformer encoder 中,提取处的特征作为交叉注意力输入送给 decoder。decoder 每次预测下一个 token,其输入是对应多任务学习的一些预设 token 和 prompt。

3、核心:多任务训练

虽然语音系统主要的任务是给一段话,把里面说的词识别出来,但是实际上大部分语言识别系统来说,还需要进行其他的后处理:检测是否有人说话(VAD)、谁在说话、识别的语音文本添加标点等等。作者希望一个模型可以同时做转录、VAD、时间戳、检测等等任务

all in one的方法会带来两个问题:比如要做VAD,可能我只需要一个小模型就可以完成,但现在必须要用这个超大模型。另外,假如我这个模型在某个任务表现不好,那么我需要多添加该任务数据继续训练,但继续训练,其他任务的效果是否会受影响。

具体任务如下:

一是给定英文语音,转录成英文文本;二是给定其他语言语音,转录并翻译成英文文本;三是给定其他语言语音,转录成该语言文本;四是给定只有背景音乐的音频,识别出无人说话。

所有这些任务都由解码器预测的 token 序列表示,从而使得一个模型能够处理多个任务。这几个任务及模型输出 token 的关系可以从图中下方的图示中的 token 序列看出:在 START OF TRANSCRIPT token 之后,如果当前无人说话,则识别为 NO SPEECH 。如果有人说话,则识别出当前语音所属的语言 LANGUAGE TAG 。然后有两种可能的任务 TRANSCRIBE 还是翻译任务 TRANSLATE ,这两种任务又分为两种形式:带时间戳的和不带时间戳的,分别穿插或不穿插时间戳 token ,预测出文本 token。最后到达 EOT token,整个流程结束。

那么如何训练这些任务呢?使用的是一个prompt格式,不同的任务通过不同的tokens组合来区别的,三种:特殊控制token、文本token、时间戳token

从起点开始,有一定概率走prev这个,表示前面一段我已经转录的内容(包括文本和时间戳),也有一定概率直接走到start token,然后学习语言类别token(包括99种语言+空白),接下来分两个token(转录还是翻译),然后有分两中(是否预测时间戳),有时间戳token则需要预测这句话的开始结束时间+内容,没有时间戳的话,直接预测这三十秒的文字,最后EOT结束。这样相比bert使用不同的输出头,对应不同的损失来说。whisper多任务只需要一个输出头,一个损失函数就可以,通过控制输入的流来控制不同的任务。但这样设计也有缺陷:某个任务表现不好,需要模型完全训练,这样对其他任务来说也会有影响,牵一发动全身。

实验

作者实验的数据集是模型训练集没有使用过的,认为是zero-shot。验证标准:WER

结论

Whisper 说明在语音识别领域,对于把大规模的弱监督训练的认识还是不够,我们的模型结果说明不需要做自监督 或者自训练,只要在大规模数据集上训练好模型,推理时无需任何微调,只需要zero-shot就可以。

基于Whisper开发应用工具:

AutoCut: 通过字幕来剪切视频

github: https://github.com/mli/autocut

AutoCut 使用 Whisper 来对你的视频自动生成字幕。然后在字幕文件中你选择需要保留的句子,AutoCut 将对你视频中对应的片段裁切并保存。你无需使用视频编辑软件,只需要编辑文本文件即可完成视频剪切。

假如你录制的视频放在 2022-11-04/ 这个文件夹里。那么运行

autocut -d 2022-11-04

提示:如果你使用 OBS 录屏,可以在 设置->高级->录像->文件名格式 中将空格改成 /,即 %CCYY-%MM-%DD/%hh-%mm-%ss。那么视频文件将放在日期命名的文件夹里。

AutoCut 将持续对这个文件夹里视频进行字幕抽取和剪切。例如,你刚完成一个视频录制,保存在 11-28-18.mp4。AutoCut 将生成 11-28-18.md。你在里面选择需要保留的句子后,AutoCut 将剪切出 11-28-18_cut.mp4,并生成 11-28-18_cut.md 来预览结果。

你可以使用任何的 Markdown 编辑器。例如我常用 VS Code 和 Typora。下图是通过 Typora 来对 11-28-18.md 编辑。

全部完成后在 autocut.md 里选择需要拼接的视频后,AutoCut 将输出 autocut_merged.mp4 和对应的字幕文件。

转录某个视频生成 .srt 和 .md 结果。

autocut -t 22-52-00.mp4
  1. 如果对转录质量不满意,可以使用更大的模型,例如autocut -t 22-52-00.mp4 –whisper-model large默认是 small。更好的模型是 medium 和 large,但推荐使用 GPU 获得更好的速度。也可以使用更快的 tiny 和 base,但转录质量会下降。

剪切某个视频

autocut -c 22-52-00.mp4 22-52-00.srt 22-52-00.md
  1. 默认视频比特率是 --bitrate 10m,你可以根据需要调大调小。
  2. 如果不习惯 Markdown 格式文件,你也可以直接在 srt 文件里删除不要的句子,在剪切时不传入 md 文件名即可。就是 autocut -c 22-52-00.mp4 22-52-00.srt
  3. 如果仅有 srt 文件,编辑不方便可以使用如下命令生成 md 文件,然后编辑 md 文件即可,但此时会完全对照 srt 生成,不会出现 no speech 等提示文本。autocut -m test.srt test.mp4 autocut -m test.mp4 test.srt # 支持视频和字幕乱序传入 autocut -m test.srt # 也可以只传入字幕文件

一些小提示

  1. 讲得流利的视频的转录质量会高一些,这因为是 Whisper 训练数据分布的缘故。对一个视频,你可以先粗选一下句子,然后在剪出来的视频上再剪一次。
  2. 最终视频生成的字幕通常还需要做一些小编辑。你可以直接编辑md文件(比srt文件更紧凑,且嵌入了视频)。然后使用 autocut -s 22-52-00.md 22-52-00.srt 来生成更新的字幕 22-52-00_edited.srt。注意这里会无视句子是不是被选中,而是全部转换成 srt
  3. 最终视频生成的字幕通常还需要做一些小编辑。但 srt 里面空行太多。你可以使用 autocut -s 22-52-00.srt 来生成一个紧凑些的版本 22-52-00_compact.srt 方便编辑(这个格式不合法,但编辑器,例如 VS Code,还是会进行语法高亮)。编辑完成后,autocut -s 22-52-00_compact.srt 转回正常格式。
  4. 用 Typora 和 VS Code 编辑 Markdown 都很方便。他们都有对应的快捷键 mark 一行或者多行。但 VS Code 视频预览似乎有点问题。
  5. 视频是通过 ffmpeg 导出。在 Apple M1 芯片上它用不了 GPU,导致导出速度不如专业视频软件。