NTIRE冠军方案 | NAFSSR

论文:https://arxiv.org/pdf/2204.08714v2.pdf

代码:https://github.com/megvii-research/NAFNet

近日,New Trends in Image Restoration and Enhancement (以下简称:NTIRE) 比赛结果揭晓,旷视研究院荣获双目图像超分辨率赛道的冠军。NTIRE 即“图像恢复与增强的新趋势”,是近年来计算机图像恢复领域最具影响力的一场全球性赛事,由苏黎世联邦理工学院计算机视觉实验室(Computer Vision Laboratory, ETH Zurich)主办,每年都会吸引大量的关注者和参赛者。

双目图像超分辨率挑战赛 (Stereo Image Super-Resolution Challenge)作为 NTIRE 研讨会的一部分与 CVPR 2022 一起举办,本次大赛的目的是从低分辨率(LR)双目图像重建高分辨率(HR)双目图像。

赛题简介

图像恢复(Image Restoration) 任务,旨在将降质的图像(如带噪声的,模糊的,低分辨率的…)恢复成清晰的图像。而本次的赛题,双目超分辨率任务,目标是用低分辨率的一对左右视角的立体图像来重建高分辨率的立体图像。与单张图像的超分辨率任务不同,双目超分辨率可以利用场景的左右两个视角提供的互补信息,从而提升图像恢复质量。

旷视夺冠算法介绍

对于双目超分辨率任务,最直接的想法是将左右视角的两张图片独立的恢复成清晰图像,互不影响。而我们的工作,Nonlinear Activation Free Network for Image Restoration [2] (以下简称:NAFNet)在单张图像恢复领域提供了一个简单且强有力的基线。其效果如下图所示:

0ec55234-029b-42ff-b2f4-86d6a3d69186.gif

图1. NAFNet 的降噪/去模糊效果
受此启发,我们直接利用 NAFNet 进行单张图像的超分辨率重建。虽然已经能取得不错的性能,但是这样的做法忽略了双目任务的特殊性:没有充分利用两个视角提供的互补信息。为此,我们在使用 NAFNet 分别提取左右两个视角的单图像特征之外,引入了立体交叉注意力模块(Stereo Cross Attention Module, 以下简称: SCAM)来融合左右视角的图像特征。我们称该方法为 NAFSSR: Stereo Image Super-Resolution Using NAFNet (以下简称:NAFSSR),其总体结构如下图所示:

image.png
图2. NAFSSR 总体结构
其中 NAFBlock 直接采用了 NAFNet 的模块,而 SCAM 细节如下图所示:

image.png

图3. SCAM

它用于融合 NAFNet 提取到的左右视图特征。

在模型设计之外,我们发现训练/测试时的统计值分布不一致问题(对于该问题,可以参考我们的另外一项工作,TLSC [3])在双目超分辨率任务中依然存在,会降低图像恢复的质量,所以我们采用了 TLSC 以缓解该不一致问题。

结合模型设计与训练/测试时的策略,我们在 Flicker1024 测试集上的性能如下图所示:

image.png
图4. NAFSSR 的在客观指标上和现有先进方法的对比
可视化结果如下图所示:
image.png

更多可视化结果,方法细节,可以参考我们的论文:

[1] NAFSSR: Stereo Image Super-Resolution Using NAFNet

[2] Simple Baselines for Image Restoration

[3] Revisiting Global Statistics Aggregation for Improving Image Restoration

来源:旷视研究院
作者:旷视研究院

BERT-Pre-training of Deep Bidirectional Transformers for Language Understanding

Transformer模型是目前机器翻译等NLP问题最好的解决办法,比RNN有大幅提高。Bidirectional Encoder Representations from Transformers (BERT) 是预训练Transformer最常用的方法,可以大幅提升Transformer的表现。

bert主要使用两个任务做训练:

1、预测被遮挡的单词

2、判断两句话是否相邻

任务一:

·𝐞: one-hot vector of the masked word “cat”.
• 𝐩: output probability distribution at the masked position.
• Loss = CrossEntropy(𝐞, 𝐩) .
• Performing one gradient descent to update the model parameters.

Task 2: Predict the Next Sentence

Given the sentence:
“calculus is a branch of math”.
• Is this the next sentence?
“it was developed by newton and leibniz”

Input:两句话之间有sep符号分开,cls表示分类任务
[CLS] “calculus is a branch of math”
[SEP] “it was developed by newton and leibniz”
• [CLS] is a token for classification.
• [SEP] is for separating sentences.

Input:
[CLS] “calculus is a branch of math”
[SEP] “it was developed by newton and leibniz”
• Target: true

Combining the two methods:

• Input:
“[CLS] calculus is a [MASK] of math
[SEP] it [MASK] developed by newton and leibniz”.
• Targets: true, “branch”, “was”.

bert同时使用两种任务结合:


Loss 1 is for binary classification (i.e., predicting the next
sentence.)
• Loss 2 and Loss 3 are for multi-class classification (i.e., predicting
the masked words.)
• Objective function is the sum of the three loss functions.
• Update model parameters by performing one gradient descent

数据集:

BERT的bidirectional如何体现的?

论文研究团队有理由相信,深度双向模型比left-to-right 模型或left-to-right and right-to-left模型的浅层连接更强大。从中可以看出BERT的双向叫深度双向,不同于以往的双向理解,以往的双向是从左到右和从右到左结合,这种虽然看着是双向的,但是两个方向的loss计算相互独立,所以其实还是单向的,只不过简单融合了一下,而bert的双向是要同时看上下文语境的,所有不同。

为了训练一个深度双向表示(deep bidirectional representation),研究团队采用了一种简单的方法,即随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token,(我理解这种情况下,模型如果想预测出这个masked的词,就必须结合上下文来预测,所以就达到了双向目的,有点类似于我们小学时候做的完形填空题目,你要填写对这个词,就必须结合上下文,BERT就是这个思路训练机器的,看来利用小学生的教学方式,有助于训练机器)。论文将这个过程称为“Masked Language Model”(MLM)。

Masked双向语言模型这么做:随机选择语料中15%的单词,把它抠掉,也就是用[Mask]掩码代替原始单词,然后要求模型去正确预测被抠掉的单词。但是这里有个问题:训练过程大量看到[mask]标记,但是真正后面用的时候是不会有这个标记的,这会引导模型认为输出是针对[mask]这个标记的,但是实际使用又见不到这个标记,这自然会有问题。为了避免这个问题,Bert改造了一下,15%的被上天选中要执行[mask]替身这项光荣任务的单词中,只有80%真正被替换成[mask]标记,10%被狸猫换太子随机替换成另外一个单词,10%情况这个单词还待在原地不做改动。这就是Masked双向语音模型的具体做法。

例如在这个句子“my dog is hairy”中,它选择的token是“hairy”。然后,执行以下过程:

数据生成器将执行以下操作,而不是始终用[MASK]替换所选单词:

80%的时间:用[MASK]标记替换单词,例如,my dog is hairy → my dog is [MASK]
10%的时间:用一个随机的单词替换该单词,例如,my dog is hairy → my dog is apple
10%的时间:保持单词不变,例如,my dog is hairy → my dog is hairy. 这样做的目的是将表示偏向于实际观察到的单词。


Transformer encoder不知道它将被要求预测哪些单词或哪些单词已被随机单词替换,因此它被迫保持每个输入token的分布式上下文表示。此外,因为随机替换只发生在所有token的1.5%(即15%的10%),这似乎不会损害模型的语言理解能力。

使用MLM的第二个缺点是每个batch只预测了15%的token,这表明模型可能需要更多的预训练步骤才能收敛。团队证明MLM的收敛速度略慢于 left-to-right的模型(预测每个token),但MLM模型在实验上获得的提升远远超过增加的训练成本。

Transformer–Attention Is All You Need

transformerr特点:

·是一个encoder-decoder模型

·非RNN模型

·完全基于全连接和注意力

·性能远超RNN(大数据集)

回忆seq-seq模型:

如何求c:

如何从RNN到transformer:自注意力层

在self-attention中,每个单词有3个不同的向量,它们分别是Query向量( Q ),Key向量( K )和Value向量( V ),长度均是64。它们是通过3个不同的权值矩阵由嵌入向量 X 乘以三个不同的权值矩阵 WQ , WK , WV 得到,其中三个矩阵的尺寸也是相同的。均是 512×64 。

总结为如下图所示的矩阵形式:

搭建transfomer:多头自注意力层

上面给出的是一个自注意力层,我们使用N个相同的层,并行,不同注意力层不共享参数。将多头的输出进行堆叠作为多头注意力层的输出。

Stacked Self-Attention Layers

一个encoder block:

最终 堆叠6个:作为transfomer encoder:

decoder部分:

encoder block:

整体网络:

神经网络结构搜索 (3/3): 可微方法 Differentiable Neural Architecture Search

目前大多数NAS方法都是基于Differentiable Neural Architecture Search


– Liu, Simonyan, & Yang. DARTS: Differentiable Architecture Search. In ICLR, 2019. DARTS 定义的目标函数是神经网络超参数的可微函数。可以直接进行训练。

– Wu et al. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search. In CVPR, 2019.可以认为是darts的一个特例。

基本思想:

用户需要事先定义一些候选模块:每个候选模快不同

暴力枚举不显示,使用super-net:

super – net:

每一层都由九个候选模块并联而成。

输出加权平均:权重ai也是可训练的:

训练:

上面是以最好的测试效果作为目标,但有时也要考虑计算量(部署到移动设备):

如何在NAS中考虑计算量:

神经网络结构搜索 Neural Architecture Search(2)RNN+RL


论文: Zoph & Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

使用RNN来生成神经网络结构,然后使用RL强化学习来训练RNN,目前该方法已经过时了

第一步预测某一层卷积核数量:

第二步:

将第一步p的变成one-hot向量:a1,然后通过一个嵌入层变成x1作为第二步的输入,输出filter的大小。

第三步:预测步长

至此,第一个卷积的超参数就获得了。

因为目标函数不可微,所以只能使用强化学习来训练rnn:

神经网络结构搜索 Neural Architecture Search(1)基本概念

神经网络结构搜索 (Neural Architecture Search) 的基础知识,包括超参数 (Hyper-parameters)、搜索空间 (Search Space)、随机搜索 (Random Search) 等概念。

神经网络中有很多参数:

• Parameters :比如权重
• Hyper-parameter:搭建神经网络需要自己手动设置的一些参数(优化算法、epoch、学习率,网络结构等等)

如何自动调整超参数是一个很重要的方向。

如何调整网络结构超参数:

什么是NAS?找到最优的网络结构使得结果最好。(也有一些附加条件:比如计算量最小、网络模型最小、运行速度等等)

我们不可能遍历所有的网络 超参数取值范围,因此需要一个搜索空间search space:搜索空间指的是所有可能的 网络结构。

NAS的输出:输出一个网络结构.

如何选取超参数?

1、随机搜索

从搜索空间随机选择一组超参数,然后使用这组超参数去训练一个CNN模型,一直到模型收敛,最后用测试集做预测。

重复上述过程:。。。。。

缺点:1、每次搜索的代价昂贵 2、搜索空间太大了

小样本学习之—Pretraining+Fine Tuning (3)

小样本学习里面有一个非常常见和实用的方法:使用大数据集预训练,小数据集中微调。

参考文献和代码:

1. Chen, Liu, Kira, Wang, & Huang. A Closer Look at Few-shot Classification. In ICLR, 2019. 代码: https://github.com/wyharveychen/Close…

2. Dhillon, Chaudhari, Ravichandran, & Soatto. A baseline for few-shot image classification. In ICLR, 2020.

3. Chen, Wang, Liu, Xu, & Darrell. A New Meta-Baseline for Few-Shot Learning. arXiv, 2020. 代码:https://github.com/cyvius96/few-shot-…

小样本学习旨在通过有限标记数据学习识别新类别,可以将小样本学习算法分为三大类:基于初始化的方法、基于度量学习的方法和基于数据增强的方法。

基于初始化的方法:学习微调,旨在学习一个好的模型初始化策略,使得能够通过少量标记数据和有限的梯度更新轮次即可完成对新类别的分类,或者学习一个优化器。

基于距离度量的方法:学习比较,如果一个模型能够计算两张图像的相似度,那么它可能基于标记数据对未知图像进行分类,一般基于余弦相似度、欧式距离、岭回归、图神经网络等计算距离。

基于数据增强的方法:学习增强,旨在通过学习一个数据生成器,通过数据生成器增强新类的样本量。由于基于数据增强的方法往往与零样本方法协同优化,所以本文作者不考虑基于数据增强的方法。

领域自适应:一种旨在缓解源领域和目标领域间领域漂移现象的技术。小样本分类与领域自适应类似,区别在于在领域自适应中,目标域往往拥有大量的可用样本,而小样本学习在新领域中仅有少量可用样本。

大部分的思路:通过一个大数据集进行训练一个神经网络,在做few-shot的时候,我们要用到这个与训练好的 神经网络,我们分别把query和support set送进神经网络,并获得特征向量,就可以比较 query和support set 在空间上的相似度(比如余弦相似度),然后就可以比较了。训练好的网络去掉全连接层。

2、不微调,直接使用预训练的网络进行预测:

3、对query分类:

4、微调:

微调调的是softmax,而不是CNN特征提取网络!也就是微调下面的W和B

1、微调的初始化:让W=M,b=0

如何微调:使用entropy损失来更新w和b参数

小样本学习之–基本概念(1)

来自wangshusen的课件: https://github.com/wangshusen/DeepLearning

小样本学习就是用极少的数据做分类or回归。

如上面的suppoort set 里面有两个类别,右边query图片你认为是set里面的哪个类别?对于人类来说非常简单,对于机器来说能不能像人一样去识别query属于哪一类?

对于小样本学习,不可能按照传统的方法去训练一个分类模型。小样本不能训练出一个神经网络。few-shot learing就是去解决小样本分类问题。

few-shot learing 的训练目标与传统的监督学习目标不同,传统的分类是学会识别训练集合里面的图片 ,并且泛化到测试机,神经网络识别出该图片属于哪个类。而few shot learing是让机器自己学会学习,学习的目的不是让机器学会那个是大象那个是老虎,而是让模型学会学习不同类别的不同之处,给定两张图片,模型知道两个图片是否是同一类别。哪怕模型训练集中没有出现过该类别。

虽然模型没有见过斗牛犬和穿山甲,但能够知道这两个是不是一个东西。

给神经网络一个query和六张图片(support set),现在神经网络依次将query和supportset做对比,判断query和那个更相似。

support set 和 train set 区别:

训练集很大每一类下面有很多图片,support set小,只能在预测的时候提供一些额外信息,用一个大的训练集训练一个神经网络,训练的目的不是让模型识别图片里面的大象老虎,而是学会理解不同类别的异同。

Meta learing:元学习,自己学会学习

传统监督学习 vs few shot learing

主要区别就是:是否训练集中存在测试的类别。query可以是模型没见过的类别。因此会更难。

为了让模型识别没见的东西:需要为模型提供一个参考:support set,计算相似度。

K-way N-shot support set: K-有K个类别,,每个类别有n个样本。

准确度随着 K个类别 数增加而降低。

准确度随着每个类的样本数而增加

小样本学习最基本的想法:

可以用大规模数据集做训练:

数据集:

1、手写数字:

2、图片数据

小样本学习之—-孪生网络(Siamese Networks) (2)

孪生网络(Siamese Networks) 属于二分类,基于相似性的先验知识。

参考论文:

1、Siamese Neural Networks for One-shot Image Recognition

2、FaceNet: A Unified Embedding for Face Recognition and Clustering

简单来说,Siamese network就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的,如下图所示。

训练连体网络的两种方法:

1、每次取一对样本,比较他们的相似度。

Siamese Neural Networks for One-shot Image Recognition

使用一个大的数据集,每一类里面有很多样本。用训练集构造正样本和负样本。正样本告诉神经网络什么是同一类,负样本告诉神经网络不同样本的区别。

1.1 数据集的获取 (正负样本的构造)

从同一类图片随机抽取两张图片,并设置标签1,表示同一类。

从不同类中随机抽取两张图片,设置标签为0,表示不同的类别。

1.2、网络架构

1.3 训练:衡量不同图片的相似度(为什么叫连体网络:共享权值,公用一个CNN框架)

1.4损失:

target 和 sim 的损失,来更新参数。

1.4、测试位置的数据

逐一将support set里面的图片分别和query求相似度,取其最高的那个。

2、每次取三个样本( anchor ,+,-),比较他们的相似度。

FaceNet: A Unified Embedding for Face Recognition and Clustering

2.1数据集处理:

从数据集中随机抽取一张图片,作为锚点anchor,再从该类别中随机去一张正样本 ,从除了该类以外的图片中抽取一个负样本作为sample

2.2训练:共享网络

2.3损失函数:

模板d+越小,d-越大

2.4 测试:选择模型输出距离最小的。

总结:

Few-Shot Papers–小样本学习论文汇总

来自GitHub仓库:https://github.com/tata1661/FSL-Mate/tree/master/FewShotPapers

This repository contains few-shot learning (FSL) papers mentioned in our FSL survey published in ACM Computing Surveys (JCR Q1, CORE A*).

For convenience, we also include public implementations of respective authors.

We will update this paper list to include new FSL papers periodically.

Citation

Please cite our paper if you find it helpful.

@article{wang2020generalizing,
  title={Generalizing from a few examples: A survey on few-shot learning},
  author={Wang, Yaqing and Yao, Quanming and Kwok, James T and Ni, Lionel M},
  journal={ACM Computing Surveys},
  volume={53},
  number={3},
  pages={1--34},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Content

  1. Survey
  2. Data
  3. Model
    1. Multitask Learning
    2. Embedding/Metric Learning
    3. Learning with External Memory
    4. Generative Modeling
  4. Algorithm
    1. Refining Existing Parameters
    2. Refining Meta-learned Parameters
    3. Learning Search Steps
  5. Applications
    1. Computer Vision
    2. Robotics
    3. Natural Language Processing
    4. Acoustic Signal Processing
    5. Recommendation
    6. Others
  6. Theories
  7. Few-shot Learning and Zero-shot Learning
  8. Variants of Few-shot Learning
  9. Datasets/Benchmarks
  10. Software Library

Survey

  1. Generalizing from a few examples: A survey on few-shot learning, CSUR, 2020 Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. paper arXiv

Data

  1. Learning from one example through shared densities on transforms, in CVPR, 2000. E. G. Miller, N. E. Matsakis, and P. A. Viola. paper
  2. Domain-adaptive discriminative one-shot learning of gestures, in ECCV, 2014. T. Pfister, J. Charles, and A. Zisserman. paper
  3. One-shot learning of scene locations via feature trajectory transfer, in CVPR, 2016. R. Kwitt, S. Hegenbart, and M. Niethammer. paper
  4. Low-shot visual recognition by shrinking and hallucinating features, in ICCV, 2017. B. Hariharan and R. Girshick. paper code
  5. Improving one-shot learning through fusing side information, arXiv preprint, 2017. Y.H.Tsai and R.Salakhutdinov. paper
  6. Fast parameter adaptation for few-shot image captioning and visual question answering, in ACM MM, 2018. X. Dong, L. Zhu, D. Zhang, Y. Yang, and F. Wu. paper
  7. Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning, in CVPR, 2018. Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang. paper
  8. Low-shot learning with large-scale diffusion, in CVPR, 2018. M. Douze, A. Szlam, B. Hariharan, and H. Jégou. paper
  9. Diverse few-shot text classification with multiple metrics, in NAACL-HLT, 2018. M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and B. Zhou. paper code
  10. Delta-encoder: An effective sample synthesis method for few-shot object recognition, in NeurIPS, 2018. E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, R. Feris, R. Giryes, and A. Bronstein. paper
  11. Low-shot learning via covariance-preserving adversarial augmentation networks, in NeurIPS, 2018. H. Gao, Z. Shou, A. Zareian, H. Zhang, and S. Chang. paper
  12. Learning to self-train for semi-supervised few-shot classification, in NeurIPS, 2019. X. Li, Q. Sun, Y. Liu, S. Zheng, Q. Zhou, T.-S. Chua, and B. Schiele. paper
  13. Few-shot learning with global class representations, in ICCV, 2019. A. Li, T. Luo, T. Xiang, W. Huang, and L. Wang. paper
  14. AutoAugment: Learning augmentation policies from data, in CVPR, 2019. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. paper
  15. EDA: Easy data augmentation techniques for boosting performance on text classification tasks, in EMNLP and IJCNLP, 2019. J. Wei and K. Zou. paper
  16. LaSO: Label-set operations networks for multi-label few-shot learning, in CVPR, 2019. A. Alfassy, L. Karlinsky, A. Aides, J. Shtok, S. Harary, R. Feris, R. Giryes, and A. M. Bronstein. paper code
  17. Image deformation meta-networks for one-shot learning, in CVPR, 2019. Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, and M. Hebert. paper code
  18. Spot and learn: A maximum-entropy patch sampler for few-shot image classification, in CVPR, 2019. W.-H. Chu, Y.-J. Li, J.-C. Chang, and Y.-C. F. Wang. paper
  19. Data augmentation using learned transformations for one-shot medical image segmentation, in CVPR, 2019. A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca. paper
  20. Adversarial feature hallucination networks for few-shot learning, in CVPR, 2020. K. Li, Y. Zhang, K. Li, and Y. Fu. paper
  21. Instance credibility inference for few-shot learning, in CVPR, 2020. Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. paper
  22. Diversity transfer network for few-shot learning, in AAAI, 2020. M. Chen, Y. Fang, X. Wang, H. Luo, Y. Geng, X. Zhang, C. Huang, W. Liu, and B. Wang. paper code
  23. Neural snowball for few-shot relation learning, in AAAI, 2020. T. Gao, X. Han, R. Xie, Z. Liu, F. Lin, L. Lin, and M. Sun. paper code
  24. Associative alignment for few-shot image classification, in ECCV, 2020. A. Afrasiyabi, J. Lalonde, and C. Gagné. paper code
  25. Information maximization for few-shot learning, in NeurIPS, 2020. M. Boudiaf, I. Ziko, J. Rony, J. Dolz, P. Piantanida, and I. B. Ayed. paper code
  26. Self-training for few-shot transfer across extreme task differences, in ICLR, 2021. C. P. Phoo, and B. Hariharan. paper
  27. Free lunch for few-shot learning: Distribution calibration, in ICLR, 2021. S. Yang, L. Liu, and M. Xu. paper code
  28. Parameterless transductive feature re-representation for few-shot learning, in ICML, 2021. W. Cui, and Y. Guo;. paper
  29. Learning intact features by erasing-inpainting for few-shot classification, in AAAI, 2021. J. Li, Z. Wang, and X. Hu. paper
  30. Variational feature disentangling for fine-grained few-shot classification, in ICCV, 2021. J. Xu, H. Le, M. Huang, S. Athar, and D. Samaras. paper
  31. Coarsely-labeled data for better few-shot transfer, in ICCV, 2021. C. P. Phoo, and B. Hariharan. paper
  32. Pseudo-loss confidence metric for semi-supervised few-shot learning, in ICCV, 2021. K. Huang, J. Geng, W. Jiang, X. Deng, and Z. Xu. paper
  33. Iterative label cleaning for transductive and semi-supervised few-shot learning, in ICCV, 2021. M. Lazarou, T. Stathaki, and Y. Avrithis. paper
  34. Meta two-sample testing: Learning kernels for testing with limited data, in NeurIPS, 2021. F. Liu, W. Xu, J. Lu, and D. J. Sutherland. paper
  35. Dynamic distillation network for cross-domain few-shot recognition with unlabeled data, in NeurIPS, 2021. A. Islam, C.-F. Chen, R. Panda, L. Karlinsky, R. Feris, and R. Radke. paper
  36. Towards better understanding and better generalization of low-shot classification in histology images with contrastive learning, in ICLR, 2022. J. Yang, H. Chen, J. Yan, X. Chen, and J. Yao. paper code
  37. FlipDA: Effective and robust data augmentation for few-shot learning, in ACL, 2022. J. Zhou, Y. Zheng, J. Tang, L. Jian, and Z. Yang. paper code
  38. PromDA: Prompt-based data augmentation for low-resource NLU tasks, in ACL, 2022. Y. Wang, C. Xu, Q. Sun, H. Hu, C. Tao, X. Geng, and D. Jiang. paper code
  39. N-shot learning for augmenting task-oriented dialogue state tracking, in Findings of ACL, 2022. I. T. Aksu, Z. Liu, M. Kan, and N. F. Chen. paper
  40. Generating representative samples for few-shot classification, in CVPR, 2022. J. Xu, and H. Le. paper code
  41. Semi-supervised few-shot learning via multi-factor clustering, in CVPR, 2022. J. Ling, L. Liao, M. Yang, and J. Shuai. paper

Model

Multitask Learning

  1. Multi-task transfer methods to improve one-shot learning for multimedia event detection, in BMVC, 2015. W. Yan, J. Yap, and G. Mori. paper
  2. Label efficient learning of transferable representations across domains and tasks, in NeurIPS, 2017. Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei. paper
  3. Few-shot adversarial domain adaptation, in NeurIPS, 2017. S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. paper
  4. One-shot unsupervised cross domain translation, in NeurIPS, 2018. S. Benaim and L. Wolf. paper
  5. Multi-content GAN for few-shot font style transfer, in CVPR, 2018. S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. paper code
  6. Feature space transfer for data augmentation, in CVPR, 2018. B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos. paper
  7. Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data, in ECCV, 2018. Y. Zhang, H. Tang, and K. Jia. paper
  8. Few-shot charge prediction with discriminative legal attributes, in COLING, 2018. Z. Hu, X. Li, C. Tu, Z. Liu, and M. Sun. paper
  9. Boosting few-shot visual learning with self-supervision, in ICCV, 2019. S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord. paper
  10. When does self-supervision improve few-shot learning?, in ECCV, 2020. J. Su, S. Maji, and B. Hariharan. paper
  11. Pareto self-supervised training for few-shot learning, in CVPR, 2021. Z. Chen, J. Ge, H. Zhan, S. Huang, and D. Wang. paper
  12. Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation, in ICML, 2021. H. Wang, H. Zhao, and B. Li;. paper code

Embedding/Metric Learning

  1. Object classification from a single example utilizing class relevance metrics, in NeurIPS, 2005. M. Fink. paper
  2. Optimizing one-shot recognition with micro-set learning, in CVPR, 2010. K. D. Tang, M. F. Tappen, R. Sukthankar, and C. H. Lampert. paper
  3. Siamese neural networks for one-shot image recognition, ICML deep learning workshop, 2015. G. Koch, R. Zemel, and R. Salakhutdinov. paper
  4. Matching networks for one shot learning, in NeurIPS, 2016. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al. paper
  5. Learning feed-forward one-shot learners, in NeurIPS, 2016. L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. paper
  6. Few-shot learning through an information retrieval lens, in NeurIPS, 2017. E. Triantafillou, R. Zemel, and R. Urtasun. paper
  7. Prototypical networks for few-shot learning, in NeurIPS, 2017. J. Snell, K. Swersky, and R. S. Zemel. paper code
  8. Attentive recurrent comparators, in ICML, 2017. P. Shyam, S. Gupta, and A. Dukkipati. paper
  9. Learning algorithms for active learning, in ICML, 2017. P. Bachman, A. Sordoni, and A. Trischler. paper
  10. Active one-shot learning, arXiv preprint, 2017. M. Woodward and C. Finn. paper
  11. Structured set matching networks for one-shot part labeling, in CVPR, 2018. J. Choi, J. Krishnamurthy, A. Kembhavi, and A. Farhadi. paper
  12. Low-shot learning from imaginary data, in CVPR, 2018. Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. paper
  13. Learning to compare: Relation network for few-shot learning, in CVPR, 2018. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. paper code
  14. Dynamic conditional networks for few-shot learning, in ECCV, 2018. F. Zhao, J. Zhao, S. Yan, and J. Feng. paper code
  15. TADAM: Task dependent adaptive metric for improved few-shot learning, in NeurIPS, 2018. B. Oreshkin, P. R. López, and A. Lacoste. paper
  16. Meta-learning for semi-supervised few-shot classification, in ICLR, 2018. M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenen- baum, H. Larochelle, and R. S. Zemel. paper code
  17. Few-shot learning with graph neural networks, in ICLR, 2018. V. G. Satorras and J. B. Estrach. paper code
  18. A simple neural attentive meta-learner, in ICLR, 2018. N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. paper
  19. Meta-learning with differentiable closed-form solvers, in ICLR, 2019. L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. paper
  20. Learning to propagate labels: Transductive propagation network for few-shot learning, in ICLR, 2019. Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. paper code
  21. Multi-level matching and aggregation network for few-shot relation classification, in ACL, 2019. Z.-X. Ye, and Z.-H. Ling. paper
  22. Induction networks for few-shot text classification, in EMNLP-IJCNLP, 2019. R. Geng, B. Li, Y. Li, X. Zhu, P. Jian, and J. Sun. paper
  23. Hierarchical attention prototypical networks for few-shot text classification, in EMNLP-IJCNLP, 2019. S. Sun, Q. Sun, K. Zhou, and T. Lv. paper
  24. Cross attention network for few-shot classification, in NeurIPS, 2019. R. Hou, H. Chang, B. Ma, S. Shan, and X. Chen. paper
  25. Hybrid attention-based prototypical networks for noisy few-shot relation classification, in AAAI, 2019. T. Gao, X. Han, Z. Liu, and M. Sun. paper code
  26. Attention-based multi-context guiding for few-shot semantic segmentation, in AAAI, 2019. T. Hu, P. Yang, C. Zhang, G. Yu, Y. Mu and C. G. M. Snoek. paper
  27. Distribution consistency based covariance metric networks for few-shot learning, in AAAI, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao and J. Luo. paper
  28. A dual attention network with semantic embedding for few-shot learning, in AAAI, 2019. S. Yan, S. Zhang, and X. He. paper
  29. TapNet: Neural network augmented with task-adaptive projection for few-shot learning, in ICML, 2019. S. W. Yoon, J. Seo, and J. Moon. paper
  30. Prototype propagation networks (PPN) for weakly-supervised few-shot learning on category graph, in IJCAI, 2019. L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, C. Zhang. paper code
  31. Collect and select: Semantic alignment metric learning for few-shot learning, in ICCV, 2019. F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao. paper
  32. Transductive episodic-wise adaptive metric for few-shot learning, in ICCV, 2019. L. Qiao, Y. Shi, J. Li, Y. Wang, T. Huang, and Y. Tian. paper
  33. Few-shot learning with embedded class models and shot-free meta training, in ICCV, 2019. A. Ravichandran, R. Bhotika, and S. Soatto. paper
  34. PARN: Position-aware relation networks for few-shot learning, in ICCV, 2019. Z. Wu, Y. Li, L. Guo, and K. Jia. paper
  35. PANet: Few-shot image semantic segmentation with prototype alignment, in ICCV, 2019. K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng. paper code
  36. RepMet: Representative-based metric learning for classification and few-shot object detection, in CVPR, 2019. L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes, and A. M. Bronstein. paper code
  37. Edge-labeling graph neural network for few-shot learning, in CVPR, 2019. J. Kim, T. Kim, S. Kim, and C. D. Yoo. paper
  38. Finding task-relevant features for few-shot learning by category traversal, in CVPR, 2019. H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang. paper code
  39. Revisiting local descriptor based image-to-class measure for few-shot learning, in CVPR, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo. paper code
  40. TAFE-Net: Task-aware feature embeddings for low shot learning, in CVPR, 2019. X. Wang, F. Yu, R. Wang, T. Darrell, and J. E. Gonzalez. paper code
  41. Improved few-shot visual classification, in CVPR, 2020. P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal. paper
  42. Boosting few-shot learning with adaptive margin loss, in CVPR, 2020. A. Li, W. Huang, X. Lan, J. Feng, Z. Li, and L. Wang. paper
  43. Adaptive subspaces for few-shot learning, in CVPR, 2020. C. Simon, P. Koniusz, R. Nock, and M. Harandi. paper
  44. DPGN: Distribution propagation graph network for few-shot learning, in CVPR, 2020. L. Yang, L. Li, Z. Zhang, X. Zhou, E. Zhou, and Y. Liu. paper
  45. Few-shot learning via embedding adaptation with set-to-set functions, in CVPR, 2020. H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha. paper code
  46. DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers, in CVPR, 2020. C. Zhang, Y. Cai, G. Lin, and C. Shen. paper code
  47. Few-shot text classification with distributional signatures, in ICLR, 2020. Y. Bao, M. Wu, S. Chang, and R. Barzilay. paper code
  48. Learning task-aware local representations for few-shot learning, in IJCAI, 2020. C. Dong, W. Li, J. Huo, Z. Gu, and Y. Gao. paper
  49. SimPropNet: Improved similarity propagation for few-shot image segmentation, in IJCAI, 2020. S. Gairola, M. Hemani, A. Chopra, and B. Krishnamurthy. paper
  50. Asymmetric distribution measure for few-shot learning, in IJCAI, 2020. W. Li, L. Wang, J. Huo, Y. Shi, Y. Gao, and J. Luo. paper
  51. Transductive relation-propagation network for few-shot learning, in IJCAI, 2020. Y. Ma, S. Bai, S. An, W. Liu, A. Liu, X. Zhen, and X. Liu. paper
  52. Weakly supervised few-shot object segmentation using co-attention with visual and semantic embeddings, in IJCAI, 2020. M. Siam, N. Doraiswamy, B. N. Oreshkin, H. Yao, and M. Jägersand. paper
  53. Few-shot learning on graphs via super-classes based on graph spectral measures, in ICLR, 2020. J. Chauhan, D. Nathani, and M. Kaul. paper
  54. SGAP-Net: Semantic-guided attentive prototypes network for few-shot human-object interaction recognition, in AAAI, 2020. Z. Ji, X. Liu, Y. Pang, and X. Li. paper
  55. One-shot image classification by learning to restore prototypes, in AAAI, 2020. W. Xue, and W. Wang. paper
  56. Negative margin matters: Understanding margin in few-shot classification, in ECCV, 2020. B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu. paper code
  57. Prototype rectification for few-shot learning, in ECCV, 2020. J. Liu, L. Song, and Y. Qin. paper
  58. Rethinking few-shot image classification: A good embedding is all you need?, in ECCV, 2020. Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. paper code
  59. SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks, in ECCV, 2020. V. N. Nguyen, S. Løkse, K. Wickstrøm, M. Kampffmeyer, D. Roverso, and R. Jenssen. paper
  60. TAFSSL: Task-adaptive feature sub-space learning for few-shot classification, in ECCV, 2020. M. Lichtenstein, P. Sattigeri, R. Feris, R. Giryes, and L. Karlinsky. paper
  61. Attentive prototype few-shot learning with capsule network-based embedding, in ECCV, 2020. F. Wu, J. S.Smith, W. Lu, C. Pang, and B. Zhang. paper
  62. Embedding propagation: Smoother manifold for few-shot classification, in ECCV, 2020. P. Rodríguez, I. Laradji, A. Drouin, and A. Lacoste. paper code
  63. Laplacian regularized few-shot learning, in ICML, 2020. I. M. Ziko, J. Dolz, E. Granger, and I. B. Ayed. paper code
  64. TAdaNet: Task-adaptive network for graph-enriched meta-learning, in KDD, 2020. Q. Suo, i. Chou, W. Zhong, and A. Zhang. paper
  65. Concept learners for few-shot learning, in ICLR, 2021. K. Cao, M. Brbic, and J. Leskovec. paper
  66. Reinforced attention for few-shot learning and beyond, in CVPR, 2021. J. Hong, P. Fang, W. Li, T. Zhang, C. Simon, M. Harandi, and L. Petersson. paper
  67. Mutual CRF-GNN for few-shot learning, in CVPR, 2021. S. Tang, D. Chen, L. Bai, K. Liu, Y. Ge, and W. Ouyang. paper
  68. Few-shot classification with feature map reconstruction networks, in CVPR, 2021. D. Wertheimer, L. Tang, and B. Hariharan. paper code
  69. ECKPN: Explicit class knowledge propagation network for transductive few-shot learning, in CVPR, 2021. C. Chen, X. Yang, C. Xu, X. Huang, and Z. Ma. paper
  70. Exploring complementary strengths of invariant and equivariant representations for few-shot learning, in CVPR, 2021. M. N. Rizve, S. Khan, F. S. Khan, and M. Shah. paper
  71. Rethinking class relations: Absolute-relative supervised and unsupervised few-shot learning, in CVPR, 2021. H. Zhang, P. Koniusz, S. Jian, H. Li, and P. H. S. Torr. paper
  72. Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification, in ICML, 2021. D. H. Lee, and S. Chung. paper code
  73. Learning a few-shot embedding model with contrastive learning, in AAAI, 2021. C. Liu, Y. Fu, C. Xu, S. Yang, J. Li, C. Wang, and L. Zhang. paper
  74. Looking wider for better adaptive representation in few-shot learning, in AAAI, 2021. J. Zhao, Y. Yang, X. Lin, J. Yang, and L. He. paper
  75. Tailoring embedding function to heterogeneous few-shot tasks by global and local feature adaptors, in AAAI, 2021. S. Lu, H. Ye, and D.-C. Zhan. paper
  76. Knowledge guided metric learning for few-shot text classification, in NAACL-HLT, 2021. D. Sui, Y. Chen, B. Mao, D. Qiu, K. Liu, and J. Zhao. paper
  77. Mixture-based feature space learning for few-shot image classification, in ICCV, 2021. A. Afrasiyabi, J. Lalonde, and C. Gagné. paper
  78. Z-score normalization, hubness, and few-shot learning, in ICCV, 2021. N. Fei, Y. Gao, Z. Lu, and T. Xiang. paper
  79. Relational embedding for few-shot classification, in ICCV, 2021. D. Kang, H. Kwon, J. Min, and M. Cho. paper code
  80. Transductive few-shot classification on the oblique manifold, in ICCV, 2021. G. Qi, H. Yu, Z. Lu, and S. Li. paper code
  81. Curvature generation in curved spaces for few-shot learning, in ICCV, 2021. Z. Gao, Y. Wu, Y. Jia, and M. Harandi. paper
  82. On episodes, prototypical networks, and few-shot learning, in NeurIPS, 2021. S. Laenen, and L. Bertinetto. paper
  83. Few-shot learning as cluster-induced voronoi diagrams: A geometric approach, in ICLR, 2022. C. Ma, Z. Huang, M. Gao, and J. Xu. paper code
  84. Few-shot learning with siamese networks and label tuning, in ACL, 2022. T. Müller, G. Pérez-Torró, and M. Franco-Salvador. paper code
  85. Learning to affiliate: Mutual centralized learning for few-shot classification, in CVPR, 2022. Y. Liu, W. Zhang, C. Xiang, T. Zheng, D. Cai, and X. He. paper
  86. Matching feature sets for few-shot image classification, in CVPR, 2022. A. Afrasiyabi, H. Larochelle, J. Lalonde, and C. Gagné. paper code
  87. Joint distribution matters: Deep Brownian distance covariance for few-shot classification, in CVPR, 2022. J. Xie, F. Long, J. Lv, Q. Wang, and P. Li. paper
  88. CAD: Co-adapting discriminative features for improved few-shot classification, in CVPR, 2022. P. Chikontwe, S. Kim, and S. H. Park. paper
  89. Ranking distance calibration for cross-domain few-shot learning, in CVPR, 2022. P. Li, S. Gong, C. Wang, and Y. Fu. paper
  90. EASE: Unsupervised discriminant subspace learning for transductive few-shot learning, in CVPR, 2022. H. Zhu, and P. Koniusz. paper code
  91. Cross-domain few-shot learning with task-specific adapters, in CVPR, 2022. W. Li, X. Liu, and H. Bilen. paper code

Learning with External Memory

  1. Meta-learning with memory-augmented neural networks, in ICML, 2016. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. paper
  2. Few-shot object recognition from machine-labeled web images, in CVPR, 2017. Z. Xu, L. Zhu, and Y. Yang. paper
  3. Learning to remember rare events, in ICLR, 2017. Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio. paper
  4. Meta networks, in ICML, 2017. T. Munkhdalai and H. Yu. paper
  5. Memory matching networks for one-shot image recognition, in CVPR, 2018. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei. paper
  6. Compound memory networks for few-shot video classification, in ECCV, 2018. L. Zhu and Y. Yang. paper
  7. Memory, show the way: Memory based few shot word representation learning, in EMNLP, 2018. J. Sun, S. Wang, and C. Zong. paper
  8. Rapid adaptation with conditionally shifted neurons, in ICML, 2018. T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. paper
  9. Adaptive posterior learning: Few-shot learning with a surprise-based memory module, in ICLR, 2019. T. Ramalho and M. Garnelo. paper code
  10. Coloring with limited data: Few-shot colorization via memory augmented networks, in CVPR, 2019. S. Yoo, H. Bahng, S. Chung, J. Lee, J. Chang, and J. Choo. paper
  11. ACMM: Aligned cross-modal memory for few-shot image and sentence matching, in ICCV, 2019. Y. Huang, and L. Wang. paper
  12. Dynamic memory induction networks for few-shot text classification, in ACL, 2020. R. Geng, B. Li, Y. Li, J. Sun, and X. Zhu. paper
  13. Few-shot visual learning with contextual memory and fine-grained calibration, in IJCAI, 2020. Y. Ma, W. Liu, S. Bai, Q. Zhang, A. Liu, W. Chen, and X. Liu. paper
  14. Learn from concepts: Towards the purified memory for few-shot learning, in IJCAI, 2021. X. Liu, X. Tian, S. Lin, Y. Qu, L. Ma, W. Yuan, Z. Zhang, and Y. Xie. paper
  15. Prototype memory and attention mechanisms for few shot image generation, in ICLR, 2022. T. Li, Z. Li, A. Luo, H. Rockwell, A. B. Farimani, and T. S. Lee. paper code
  16. Hierarchical variational memory for few-shot learning across domains, in ICLR, 2022. Y. Du, X. Zhen, L. Shao, and C. G. M. Snoek. paper code
  17. Remember the difference: Cross-domain few-shot semantic segmentation via meta-memory transfer, in CVPR, 2022. W. Wang, L. Duan, Y. Wang, Q. En, J. Fan, and Z. Zhang. paper

Generative Modeling

  1. One-shot learning of object categories, TPAMI, 2006. L. Fei-Fei, R. Fergus, and P. Perona. paper
  2. Learning to learn with compound HD models, in NeurIPS, 2011. A. Torralba, J. B. Tenenbaum, and R. R. Salakhutdinov. paper
  3. One-shot learning with a hierarchical nonparametric bayesian model, in ICML Workshop on Unsupervised and Transfer Learning, 2012. R. Salakhutdinov, J. Tenenbaum, and A. Torralba. paper
  4. Human-level concept learning through probabilistic program induction, Science, 2015. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper
  5. One-shot generalization in deep generative models, in ICML, 2016. D. Rezende, I. Danihelka, K. Gregor, and D. Wierstra. paper
  6. One-shot video object segmentation, in CVPR, 2017. S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. paper
  7. Towards a neural statistician, in ICLR, 2017. H. Edwards and A. Storkey. paper
  8. Extending a parser to distant domains using a few dozen partially annotated examples, in ACL, 2018. V. Joshi, M. Peters, and M. Hopkins. paper
  9. MetaGAN: An adversarial approach to few-shot learning, in NeurIPS, 2018. R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song. paper
  10. Few-shot autoregressive density estimation: Towards learning to learn distributions, in ICLR, 2018. S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Eslami, D. Rezende, O. Vinyals, and N. de Freitas. paper
  11. The variational homoencoder: Learning to learn high capacity generative models from few examples, in UAI, 2018. L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum. paper
  12. Meta-learning probabilistic inference for prediction, in ICLR, 2019. J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. paper
  13. Variational prototyping-encoder: One-shot learning with prototypical images, in CVPR, 2019. J. Kim, T.-H. Oh, S. Lee, F. Pan, and I. S. Kweon. paper code
  14. Variational few-shot learning, in ICCV, 2019. J. Zhang, C. Zhao, B. Ni, M. Xu, and X. Yang. paper
  15. Infinite mixture prototypes for few-shot learning, in ICML, 2019. K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum. paper
  16. Dual variational generation for low shot heterogeneous face recognition, in NeurIPS, 2019. C. Fu, X. Wu, Y. Hu, H. Huang, and R. He. paper
  17. Bayesian meta sampling for fast uncertainty adaptation, in ICLR, 2020. Z. Wang, Y. Zhao, P. Yu, R. Zhang, and C. Chen. paper
  18. Empirical Bayes transductive meta-learning with synthetic gradients, in ICLR, 2020. S. X. Hu, P. G. Moreno, Y. Xiao, X. Shen, G. Obozinski, N. D. Lawrence, and A. C. Damianou. paper
  19. Few-shot relation extraction via bayesian meta-learning on relation graphs, in ICML, 2020. M. Qu, T. Gao, L. A. C. Xhonneux, and J. Tang. paper code
  20. Interventional few-shot learning, in NeurIPS, 2020. Z. Yue, H. Zhang, Q. Sun, and X. Hua. paper code
  21. Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes, in ICLR, 2021. J. Snell, and R. Zemel. paper
  22. Few-shot Bayesian optimization with deep kernel surrogates, in ICLR, 2021. M. Wistuba, and J. Grabocka. paper
  23. Modeling the probabilistic distribution of unlabeled data for one-shot medical image segmentation, in AAAI, 2021. Y. Ding, X. Yu, and Y. Yang. paper code
  24. A hierarchical transformation-discriminating generative model for few shot anomaly detection, in ICCV, 2021. S. Sheynin, S. Benaim, and L. Wolf. paper
  25. Reinforced few-shot acquisition function learning for Bayesian optimization, in NeurIPS, 2021. B. Hsieh, P. Hsieh, and X. Liu. paper
  26. GanOrCon: Are generative models useful for few-shot segmentation?, in CVPR, 2022. O. Saha, Z. Cheng, and S. Maji. paper
  27. Few shot generative model adaption via relaxed spatial structural alignment, in CVPR, 2022. J. Xiao, L. Li, C. Wang, Z. Zha, and Q. Huang. paper

Algorithm

Refining Existing Parameters

  1. Cross-generalization: Learning novel classes from a single example by feature replacement, in CVPR, 2005. E. Bart and S. Ullman. paper
  2. One-shot adaptation of supervised deep convolutional models, in ICLR, 2013. J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. paper
  3. Learning to learn: Model regression networks for easy small sample learning, in ECCV, 2016. Y.-X. Wang and M. Hebert. paper
  4. Learning from small sample sets by combining unsupervised meta-training with CNNs, in NeurIPS, 2016. Y.-X. Wang and M. Hebert. paper
  5. Efficient k-shot learning with regularized deep networks, in AAAI, 2018. D. Yoo, H. Fan, V. N. Boddeti, and K. M. Kitani. paper
  6. CLEAR: Cumulative learning for one-shot one-class image recognition, in CVPR, 2018. J. Kozerawski and M. Turk. paper
  7. Learning structure and strength of CNN filters for small sample size training, in CVPR, 2018. R. Keshari, M. Vatsa, R. Singh, and A. Noore. paper
  8. Dynamic few-shot visual learning without forgetting, in CVPR, 2018. S. Gidaris and N. Komodakis. paper code
  9. Low-shot learning with imprinted weights, in CVPR, 2018. H. Qi, M. Brown, and D. G. Lowe. paper
  10. Neural voice cloning with a few samples, in NeurIPS, 2018. S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. paper
  11. Text classification with few examples using controlled generalization, in NAACL-HLT, 2019. A. Mahabal, J. Baldridge, B. K. Ayan, V. Perot, and D. Roth. paper
  12. Low shot box correction for weakly supervised object detection, in IJCAI, 2019. T. Pan, B. Wang, G. Ding, J. Han, and J. Yong. paper
  13. Diversity with cooperation: Ensemble methods for few-shot classification, in ICCV, 2019. N. Dvornik, C. Schmid, and J. Mairal. paper
  14. Few-shot image recognition with knowledge transfer, in ICCV, 2019. Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang. paper
  15. Generating classification weights with gnn denoising autoencoders for few-shot learning, in CVPR, 2019. S. Gidaris, and N. Komodakis. paper code
  16. Dense classification and implanting for few-shot learning, in CVPR, 2019. Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc. paper
  17. Few-shot adaptive faster R-CNN, in CVPR, 2019. T. Wang, X. Zhang, L. Yuan, and J. Feng. paper
  18. TransMatch: A transfer-learning scheme for semi-supervised few-shot learning, in CVPR, 2020. Z. Yu, L. Chen, Z. Cheng, and J. Luo. paper
  19. Learning to select base classes for few-shot classification, in CVPR, 2020. L. Zhou, P. Cui, X. Jia, S. Yang, and Q. Tian. paper
  20. Few-shot NLG with pre-trained language model, in ACL, 2020. Z. Chen, H. Eavani, W. Chen, Y. Liu, and W. Y. Wang. paper code
  21. Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations, in ACL, 2020. S. Coope, T. Farghly, D. Gerz, I. Vulic, and M. Henderson. paper
  22. Structural supervision improves few-shot learning and syntactic generalization in neural language models, in EMNLP, 2020. E. Wilcox, P. Qian, R. Futrell, R. Kohita, R. Levy, and M. Ballesteros. paper code
  23. A baseline for few-shot image classification, in ICLR, 2020. G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. paper
  24. Cross-domain few-shot classification via learned feature-wise transformation, in ICLR, 2020. H. Tseng, H. Lee, J. Huang, and M. Yang. paper code
  25. Graph few-shot learning via knowledge transfer, in AAAI, 2020. H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V. Chawla, and Z. Li. paper
  26. Knowledge graph transfer network for few-shot recognition, in AAAI, 2020. R. Chen, T. Chen, X. Hui, H. Wu, G. Li, and L. Lin. paper
  27. Context-Transformer: Tackling object confusion for few-shot detection, in AAAI, 2020. Z. Yang, Y. Wang, X. Chen, J. Liu, and Y. Qiao. paper
  28. A broader study of cross-domain few-shot learning, in ECCV, 2020. Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris. paper code
  29. Selecting relevant features from a multi-domain representation for few-shot classification, in ECCV, 2020. N. Dvornik, C. Schmid, and J. Mairal. paper code
  30. Prototype completion with primitive knowledge for few-shot learning, in CVPR, 2021. B. Zhang, X. Li, Y. Ye, Z. Huang, and L. Zhang. paper code
  31. Partial is better than all: Revisiting fine-tuning strategy for few-shot learning, in AAAI, 2021. Z. Shen, Z. Liu, J. Qin, M. Savvides, and K.-T. Cheng. paper
  32. PTN: A poisson transfer network for semi-supervised few-shot learning, in AAAI, 2021. H. Huang, J. Zhang, J. Zhang, Q. Wu, and C. Xu. paper
  33. A universal representation transformer layer for few-shot image classification, in ICLR, 2021. L. Liu, W. L. Hamilton, G. Long, J. Jiang, and H. Larochelle. paper
  34. Making pre-trained language models better few-shot learners, in ACL-IJCNLP, 2021. T. Gao, A. Fisch, and D. Chen. paper code
  35. Self-supervised network evolution for few-shot classification, in IJCAI, 2021. X. Tang, Z. Teng, B. Zhang, and J. Fan. paper
  36. Calibrate before use: Improving few-shot performance of language models, in ICML, 2021. Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. paper code
  37. Language models are few-shot learners, in NeurIPS, 2020. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. paper
  38. It’s not just size that matters: Small language models are also few-shot learners, in NAACL-HLT, 2021. T. Schick, and H. Schütze. paper code
  39. Self-training improves pre-training for few-shot learning in task-oriented dialog systems, in EMNLP, 2021. F. Mi, W. Zhou, L. Kong, F. Cai, M. Huang, and B. Faltings. paper
  40. Few-shot intent detection via contrastive pre-training and fine-tuning, in EMNLP, 2021. J. Zhang, T. Bui, S. Yoon, X. Chen, Z. Liu, C. Xia, Q. H. Tran, W. Chang, and P. S. Yu. paper code
  41. Avoiding inference heuristics in few-shot prompt-based finetuning, in EMNLP, 2021. P. A. Utama, N. S. Moosavi, V. Sanh, and I. Gurevych. paper code
  42. Constrained language models yield few-shot semantic parsers, in EMNLP, 2021. R. Shin, C. H. Lin, S. Thomson, C. Chen, S. Roy, E. A. Platanios, A. Pauls, D. Klein, J. Eisner, and B. V. Durme. paper code
  43. Revisiting self-training for few-shot learning of language model, in EMNLP, 2021. Y. Chen, Y. Zhang, C. Zhang, G. Lee, R. Cheng, and H. Li. paper code
  44. Language models are few-shot butlers, in EMNLP, 2021. V. Micheli, and F. Fleuret. paper code
  45. FewshotQA: A simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models, in EMNLP, 2021. R. Chada, and P. Natarajan. paper
  46. TransPrompt: Towards an automatic transferable prompting framework for few-shot text classification, in EMNLP, 2021. C. Wang, J. Wang, M. Qiu, J. Huang, and M. Gao. paper
  47. Meta distant transfer learning for pre-trained language models, in EMNLP, 2021. C. Wang, H. Pan, M. Qiu, J. Huang, F. Yang, and Y. Zhang. paper
  48. STraTA: Self-training with task augmentation for better few-shot learning, in EMNLP, 2021. T. Vu, M. Luong, Q. V. Le, G. Simon, and M. Iyyer. paper code
  49. Few-shot image classification: Just use a library of pre-trained feature extractors and a simple classifier, in ICCV, 2021. A. Chowdhury, M. Jiang, S. Chaudhuri, and C. Jermaine. paper code
  50. On the importance of distractors for few-shot classification, in ICCV, 2021. R. Das, Y. Wang, and J. M. F. Moura. paper code
  51. A multi-mode modulator for multi-domain few-shot classification, in ICCV, 2021. Y. Liu, J. Lee, L. Zhu, L. Chen, H. Shi, and Y. Yang. paper
  52. Universal representation learning from multiple domains for few-shot classification, in ICCV, 2021. W. Li, X. Liu, and H. Bilen. paper code
  53. Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder, in ICCV, 2021. H. Liang, Q. Zhang, P. Dai, and J. Lu. paper
  54. How fine-tuning allows for effective meta-learning, in NeurIPS, 2021. K. Chua, Q. Lei, and J. D. Lee. paper
  55. Multimodal few-shot learning with frozen language models, in NeurIPS, 2021. M. Tsimpoukelli, J. Menick, S. Cabi, S. M. A. Eslami, O. Vinyals, and F. Hill. paper
  56. Grad2Task: Improved few-shot text classification using gradients for task representation, in NeurIPS, 2021. J. Wang, K. Wang, F. Rudzicz, and M. Brudno. paper
  57. True few-shot learning with language models, in NeurIPS, 2021. E. Perez, D. Kiela, and K. Cho. paper
  58. POODLE: Improving few-shot learning via penalizing out-of-distribution samples, in NeurIPS, 2021. D. Le, K. Nguyen, Q. Tran, R. Nguyen, and B. Hua. paper
  59. TOHAN: A one-step approach towards few-shot hypothesis adaptation, in NeurIPS, 2021. H. Chi, F. Liu, W. Yang, L. Lan, T. Liu, B. Han, W. Cheung, and J. Kwok. paper
  60. Task affinity with maximum bipartite matching in few-shot learning, in ICLR, 2022. C. P. Le, J. Dong, M. Soltani, and V. Tarokh. paper
  61. Differentiable prompt makes pre-trained language models better few-shot learners, in ICLR, 2022. N. Zhang, L. Li, X. Chen, S. Deng, Z. Bi, C. Tan, F. Huang, and H. Chen. paper code
  62. ConFeSS: A framework for single source cross-domain few-shot learning, in ICLR, 2022. D. Das, S. Yun, and F. Porikli. paper
  63. Switch to generalize: Domain-switch learning for cross-domain few-shot classification, in ICLR, 2022. Z. Hu, Y. Sun, and Y. Yang. paper
  64. LM-BFF-MS: Improving few-shot fine-tuning of language models based on multiple soft demonstration memory, in ACL, 2022. E. Park, D. H. Jeon, S. Kim, I. Kang, and S. Na. paper code
  65. Meta-learning via language model in-context tuning, in ACL, 2022. Y. Chen, R. Zhong, S. Zha, G. Karypis, and H. He. paper code
  66. Few-shot tabular data enrichment using fine-tuned transformer architectures, in ACL, 2022. A. Harari, and G. Katz. paper
  67. Noisy channel language model prompting for few-shot text classification, in ACL, 2022. S. Min, M. Lewis, H. Hajishirzi, and L. Zettlemoyer. paper code
  68. Prompt for extraction? PAIE: Prompting argument interaction for event argument extraction, in ACL, 2022. Y. Ma, Z. Wang, Y. Cao, M. Li, M. Chen, K. Wang, and J. Shao. paper code
  69. Are prompt-based models clueless?, in ACL, 2022. P. Kavumba, R. Takahashi, and Y. Oda. paper
  70. Prototypical verbalizer for prompt-based few-shot tuning, in ACL, 2022. G. Cui, S. Hu, N. Ding, L. Huang, and Z. Liu. paper code
  71. Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity, in ACL, 2022. Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. paper
  72. PPT: Pre-trained prompt tuning for few-shot learning, in ACL, 2022. Y. Gu, X. Han, Z. Liu, and M. Huang. paper code
  73. ASCM: An answer space clustered prompting method without answer engineering, in Findings of ACL, 2022. Z. Wang, Y. Yang, Z. Xi, B. Ma, L. Wang, R. Dong, and A. Anwar. paper code
  74. Exploiting language model prompts using similarity measures: A case study on the word-in-context task, in ACL, 2022. M. Tabasi, K. Rezaee, and M. T. Pilehvar. paper
  75. P-Tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks, in ACL, 2022. X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. paper
  76. Cutting down on prompts and parameters: Simple few-shot learning with language models, in Findings of ACL, 2022. R. L. L. IV, I. Balazevic, E. Wallace, F. Petroni, S. Singh, and S. Riedel. paper code
  77. Prompt-free and efficient few-shot learning with language models, in ACL, 2022. R. K. Mahabadi, L. Zettlemoyer, J. Henderson, L. Mathias, M. Saeidi, V. Stoyanov, and M. Yazdani. paper code
  78. Pre-training to match for unified low-shot relation extraction, in ACL, 2022. F. Liu, H. Lin, X. Han, B. Cao, and L. Sun. paper code
  79. Dual context-guided continuous prompt tuning for few-shot learning, in Findings of ACL, 2022. J. Zhou, L. Tian, H. Yu, Z. Xiao, H. Su, and J. Zhou. paper
  80. Cluster & tune: Boost cold start performance in text classification, in ACL, 2022. E. Shnarch, A. Gera, A. Halfon, L. Dankin, L. Choshen, R. Aharonov, and N. Slonim. paper code
  81. Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference, in CVPR, 2022. S. X. Hu, D. Li, J. Stühmer, M. Kim, and T. M. Hospedales. paper code

Refining Meta-learned Parameters

  1. Model-agnostic meta-learning for fast adaptation of deep networks, in ICML, 2017. C. Finn, P. Abbeel, and S. Levine. paper
  2. Bayesian model-agnostic meta-learning, in NeurIPS, 2018. J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. paper
  3. Probabilistic model-agnostic meta-learning, in NeurIPS, 2018. C. Finn, K. Xu, and S. Levine. paper
  4. Gradient-based meta-learning with learned layerwise metric and subspace, in ICML, 2018. Y. Lee and S. Choi. paper
  5. Recasting gradient-based meta-learning as hierarchical Bayes, in ICLR, 2018. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. paper
  6. Few-shot human motion prediction via meta-learning, in ECCV, 2018. L.-Y. Gui, Y.-X. Wang, D. Ramanan, and J. Moura. paper
  7. The effects of negative adaptation in model-agnostic meta-learning, arXiv preprint, 2018. T. Deleu and Y. Bengio. paper
  8. Unsupervised meta-learning for few-shot image classification, in NeurIPS, 2019. S. Khodadadeh, L. Bölöni, and M. Shah. paper
  9. Amortized bayesian meta-learning, in ICLR, 2019. S. Ravi and A. Beatson. paper
  10. Meta-learning with latent embedding optimization, in ICLR, 2019. A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. paper code
  11. Meta relational learning for few-shot link prediction in knowledge graphs, in EMNLP-IJCNLP, 2019. M. Chen, W. Zhang, W. Zhang, Q. Chen, and H. Chen. paper
  12. Adapting meta knowledge graph information for multi-hop reasoning over few-shot relations, in EMNLP-IJCNLP, 2019. X. Lv, Y. Gu, X. Han, L. Hou, J. Li, and Z. Liu. paper
  13. LGM-Net: Learning to generate matching networks for few-shot learning, in ICML, 2019. H. Li, W. Dong, X. Mei, C. Ma, F. Huang, and B.-G. Hu. paper code
  14. Meta R-CNN: Towards general solver for instance-level low-shot learning, in ICCV, 2019. X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin. paper
  15. Task agnostic meta-learning for few-shot learning, in CVPR, 2019. M. A. Jamal, and G.-J. Qi. paper
  16. Meta-transfer learning for few-shot learning, in CVPR, 2019. Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. paper code
  17. Meta-learning of neural architectures for few-shot learning, in CVPR, 2020. T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. paper
  18. Attentive weights generation for few shot learning via information maximization, in CVPR, 2020. Y. Guo, and N.-M. Cheung. paper
  19. Few-shot open-set recognition using meta-learning, in CVPR, 2020. B. Liu, H. Kang, H. Li, G. Hua, and N. Vasconcelos. paper
  20. Incremental few-shot object detection, in CVPR, 2020. J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang. paper
  21. Automated relational meta-learning, in ICLR, 2020. H. Yao, X. Wu, Z. Tao, Y. Li, B. Ding, R. Li, and Z. Li. paper
  22. Meta-learning with warped gradient descent, in ICLR, 2020. S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. paper
  23. Meta-learning without memorization, in ICLR, 2020. M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn. paper
  24. ES-MAML: Simple Hessian-free meta learning, in ICLR, 2020. X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang. paper
  25. Self-supervised tuning for few-shot segmentation, in IJCAI, 2020. K. Zhu, W. Zhai, and Y. Cao. paper
  26. Multi-attention meta learning for few-shot fine-grained image recognition, in IJCAI, 2020. Y. Zhu, C. Liu, and S. Jiang. paper
  27. An ensemble of epoch-wise empirical Bayes for few-shot learning, in ECCV, 2020. Y. Liu, B. Schiele, and Q. Sun. paper code
  28. Incremental few-shot meta-learning via indirect discriminant alignment, in ECCV, 2020. Q. Liu, O. Majumder, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto. paper
  29. Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning, in ECCV, 2020. J. Kim, H. Kim, and G. Kim. paper code
  30. Bayesian meta-learning for the few-shot setting via deep kernels, in NeurIPS, 2020. M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and A. J. Storkey. paper code
  31. OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification, in NeurIPS, 2020. T. Jeong, and H. Kim. paper code
  32. Unraveling meta-learning: Understanding feature representations for few-shot tasks, in ICML, 2020. M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. paper code
  33. Node classification on graphs with few-shot novel labels via meta transformed network embedding, in NeurIPS, 2020. L. Lan, P. Wang, X. Du, K. Song, J. Tao, and X. Guan. paper
  34. Adversarially robust few-shot learning: A meta-learning approach, in NeurIPS, 2020. M. Goldblum, L. Fowl, and T. Goldstein. paper code
  35. BOIL: Towards representation change for few-shot learning, in ICLR, 2021. J. Oh, H. Yoo, C. Kim, and S. Yun. paper code
  36. Few-shot open-set recognition by transformation consistency, in CVPR, 2021. M. Jeong, S. Choi, and C. Kim. paper
  37. Improving generalization in meta-learning via task augmentation, in ICML, 2021. H. Yao, L. Huang, L. Zhang, Y. Wei, L. Tian, J. Zou, J. Huang, and Z. Li. paper
  38. A representation learning perspective on the importance of train-validation splitting in meta-learning, in ICML, 2021. N. Saunshi, A. Gupta, and W. Hu. paper code
  39. Data augmentation for meta-learning, in ICML, 2021. R. Ni, M. Goldblum, A. Sharaf, K. Kong, and T. Goldstein. paper code
  40. Task cooperation for semi-supervised few-shot learning, in AAAI, 2021. H. Ye, X. Li, and D.-C. Zhan. paper
  41. Conditional self-supervised learning for few-shot classification, in IJCAI, 2021. Y. An, H. Xue, X. Zhao, and L. Zhang. paper
  42. Cross-domain few-shot classification via adversarial task augmentation, in IJCAI, 2021. H. Wang, and Z.-H. Deng. paper code
  43. DReCa: A general task augmentation strategy for few-shot natural language inference, in NAACL-HLT, 2021. S. Murty, T. Hashimoto, and C. D. Manning. paper
  44. MetaXL: Meta representation transformation for low-resource cross-lingual learning, in NAACL-HLT, 2021. M. Xia, G. Zheng, S. Mukherjee, M. Shokouhi, G. Neubig, and A. H. Awadallah. paper code
  45. Meta-learning with task-adaptive loss function for few-shot learning, in ICCV, 2021. S. Baik, J. Choi, H. Kim, D. Cho, J. Min, and K. M. Lee. paper code
  46. Meta-Baseline: Exploring simple meta-learning for few-shot learning, in ICCV, 2021. Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang. paper
  47. A lazy approach to long-horizon gradient-based meta-learning, in ICCV, 2021. M. A. Jamal, L. Wang, and B. Gong. paper
  48. Task-aware part mining network for few-shot learning, in ICCV, 2021. J. Wu, T. Zhang, Y. Zhang, and F. Wu. paper
  49. Binocular mutual learning for improving few-shot classification, in ICCV, 2021. Z. Zhou, X. Qiu, J. Xie, J. Wu, and C. Zhang. paper code
  50. Meta-learning with an adaptive task scheduler, in NeurIPS, 2021. H. Yao, Y. Wang, Y. Wei, P. Zhao, M. Mahdavi, D. Lian, and C. Finn. paper
  51. Memory efficient meta-learning with large images, in NeurIPS, 2021. J. Bronskill, D. Massiceti, M. Patacchiola, K. Hofmann, S. Nowozin, and R. Turner. paper
  52. EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization, in NeurIPS, 2021. O. Bohdal, Y. Yang, and T. Hospedales. paper
  53. Towards enabling meta-learning from target models, in NeurIPS, 2021. S. Lu, H. Ye, L. Gan, and D. Zhan. paper
  54. The role of global labels in few-shot classification and how to infer them, in NeurIPS, 2021. R. Wang, M. Pontil, and C. Ciliberto. paper
  55. How to train your MAML to excel in few-shot classification, in ICLR, 2022. H. Ye, and W. Chao. paper code
  56. Meta-learning with fewer tasks through task interpolation, in ICLR, 2022. H. Yao, L. Zhang, and C. Finn. paper code
  57. Continuous-time meta-learning with forward mode differentiation, in ICLR, 2022. T. Deleu, D. Kanaa, L. Feng, G. Kerg, Y. Bengio, G. Lajoie, and P. Bacon. paper
  58. Bootstrapped meta-learning, in ICLR, 2022. S. Flennerhag, Y. Schroecker, T. Zahavy, H. v. Hasselt, D. Silver, and S. Singh. paper
  59. Learning prototype-oriented set representations for meta-learning, in ICLR, 2022. D. d. Guo, L. Tian, M. Zhang, M. Zhou, and H. Zha. paper
  60. Dynamic kernel selection for improved generalization and memory efficiency in meta-learning, in CVPR, 2022. A. Chavan, R. Tiwari, U. Bamba, and D. K. Gupta. paper code
  61. What matters for meta-learning vision regression tasks?, in CVPR, 2022. N. Gao, H. Ziesche, N. A. Vien, M. Volpp, and G. Neumann. paper code
  62. Multidimensional belief quantification for label-efficient meta-learning, in CVPR, 2022. D. S. Pandey, and Q. Yu. paper

Learning Search Steps

  1. Optimization as a model for few-shot learning, in ICLR, 2017. S. Ravi and H. Larochelle. paper code
  2. Meta Navigator: Search for a good adaptation policy for few-shot learning, in ICCV, 2021. C. Zhang, H. Ding, G. Lin, R. Li, C. Wang, and C. Shen. paper

Applications

Computer Vision

  1. Learning robust visual-semantic embeddings, in CVPR, 2017. Y.-H. Tsai, L.-K. Huang, and R. Salakhutdinov. paper
  2. One-shot action localization by learning sequence matching network, in CVPR, 2018. H. Yang, X. He, and F. Porikli. paper
  3. Incremental few-shot learning for pedestrian attribute recognition, in EMNLP, 2018. L. Xiang, X. Jin, G. Ding, J. Han, and L. Li. paper
  4. Few-shot video-to-video synthesis, in NeurIPS, 2019. T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro. paper code
  5. Few-shot object detection via feature reweighting, in ICCV, 2019. B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell. paper code
  6. Few-shot unsupervised image-to-image translation, in ICCV, 2019. M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz. paper code
  7. Feature weighting and boosting for few-shot segmentation, in ICCV, 2019. K. Nguyen, and S. Todorovic. paper
  8. Few-shot adaptive gaze estimation, in ICCV, 2019. S. Park, S. D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, and J. Kautz. paper
  9. AMP: Adaptive masked proxies for few-shot segmentation, in ICCV, 2019. M. Siam, B. N. Oreshkin, and M. Jagersand. paper code
  10. Few-shot generalization for single-image 3D reconstruction via priors, in ICCV, 2019. B. Wallace, and B. Hariharan. paper
  11. Few-shot adversarial learning of realistic neural talking head models, in ICCV, 2019. E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. paper code
  12. Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation, in ICCV, 2019. C. Zhang, G. Lin, F. Liu, J. Guo, Q. Wu, and R. Yao. paper
  13. Time-conditioned action anticipation in one shot, in CVPR, 2019. Q. Ke, M. Fritz, and B. Schiele. paper
  14. Few-shot learning with localization in realistic settings, in CVPR, 2019. D. Wertheimer, and B. Hariharan. paper code
  15. Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in CVPR, 2019. Y. Yu, G. Liu, and J.-M. Odobez. paper
  16. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning, in CVPR, 2019. C. Zhang, G. Lin, F. Liu, R. Yao, and C. Shen. paper code
  17. Multi-level Semantic Feature Augmentation for One-shot Learning, in TIP, 2019. Z. Chen, Y. Fu, Y. Zhang, Y.-G. Jiang, X. Xue, and L. Sigal. paper code
  18. Few-shot pill recognition, in CVPR, 2020. S. Ling, A. Pastor, J. Li, Z. Che, J. Wang, J. Kim, and P. L. Callet. paper
  19. LT-Net: Label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation, in CVPR, 2020. S. Wang, S. Cao, D. Wei, R. Wang, K. Ma, L. Wang, D. Meng, and Y. Zheng. paper
  20. 3FabRec: Fast few-shot face alignment by reconstruction, in CVPR, 2020. B. Browatzki, and C. Wallraven. paper
  21. Few-shot video classification via temporal alignment, in CVPR, 2020. K. Cao, J. Ji, Z. Cao, C.-Y. Chang, J. C. Niebles. paper
  22. One-shot adversarial attacks on visual tracking with dual attention, in CVPR, 2020. X. Chen, X. Yan, F. Zheng, Y. Jiang, S.-T. Xia, Y. Zhao, and R. Ji. paper
  23. FGN: Fully guided network for few-shot instance segmentation, in CVPR, 2020. Z. Fan, J.-G. Yu, Z. Liang, J. Ou, C. Gao, G.-S. Xia, and Y. Li. paper
  24. CRNet: Cross-reference networks for few-shot segmentation, in CVPR, 2020. W. Liu, C. Zhang, G. Lin, and F. Liu. paper
  25. Revisiting pose-normalization for fine-grained few-shot recognition, in CVPR, 2020. L. Tang, D. Wertheimer, and B. Hariharan. paper
  26. Few-shot learning of part-specific probability space for 3D shape segmentation, in CVPR, 2020. L. Wang, X. Li, and Y. Fang. paper
  27. Semi-supervised learning for few-shot image-to-image translation, in CVPR, 2020. Y. Wang, S. Khan, A. Gonzalez-Garcia, J. van de Weijer, and F. S. Khan. paper
  28. Multi-domain learning for accurate and few-shot color constancy, in CVPR, 2020. J. Xiao, S. Gu, and L. Zhang. paper
  29. One-shot domain adaptation for face generation, in CVPR, 2020. C. Yang, and S.-N. Lim. paper
  30. MetaPix: Few-shot video retargeting, in ICLR, 2020. J. Lee, D. Ramanan, and R. Girdhar. paper
  31. Few-shot human motion prediction via learning novel motion dynamics, in IJCAI, 2020. C. Zang, M. Pei, and Y. Kong. paper
  32. Shaping visual representations with language for few-shot classification, in ACL, 2020. J. Mu, P. Liang, and N. D. Goodman. paper
  33. MarioNETte: Few-shot face reenactment preserving identity of unseen targets, in AAAI, 2020. S. Ha, M. Kersner, B. Kim, S. Seo, and D. Kim. paper
  34. One-shot learning for long-tail visual relation detection, in AAAI, 2020. W. Wang, M. Wang, S. Wang, G. Long, L. Yao, G. Qi, and Y. Chen. paper code
  35. Differentiable meta-learning model for few-shot semantic segmentation, in AAAI, 2020. P. Tian, Z. Wu, L. Qi, L. Wang, Y. Shi, and Y. Gao. paper
  36. Part-aware prototype network for few-shot semantic segmentation, in ECCV, 2020. Y. Liu, X. Zhang, S. Zhang, and X. He. paper code
  37. Prototype mixture models for few-shot semantic segmentation, in ECCV, 2020. B. Yang, C. Liu, B. Li, J. Jiao, and Q. Ye. paper code
  38. Self-supervision with superpixels: Training few-shot medical image segmentation without annotation, in ECCV, 2020. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert. paper code
  39. Few-shot action recognition with permutation-invariant attention, in ECCV, 2020. H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Koniusz. paper
  40. Few-shot compositional font generation with dual memory, in ECCV, 2020. J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee. paper code
  41. Few-shot object detection and viewpoint estimation for objects in the wild, in ECCV, 2020. Y. Xiao, and R. Marlet. paper
  42. Few-shot scene-adaptive anomaly detection, in ECCV, 2020. Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang. paper code
  43. Few-shot semantic segmentation with democratic attention networks, in ECCV, 2020. H. Wang, X. Zhang, Y. Hu, Y. Yang, X. Cao, and X. Zhen. paper
  44. Few-shot single-view 3-D object reconstruction with compositional priors, in ECCV, 2020. M. Michalkiewicz, S. Parisot, S. Tsogkas, M. Baktashmotlagh, A. Eriksson, and E. Belilovsky. paper
  45. COCO-FUNIT: Few-shot unsupervised image translation with a content conditioned style encoder, in ECCV, 2020. K. Saito, K. Saenko, and M. Liu. paper code
  46. Deep complementary joint model for complex scene registration and few-shot segmentation on medical images, in ECCV, 2020. Y. He, T. Li, G. Yang, Y. Kong, Y. Chen, H. Shu, J. Coatrieux, J. Dillenseger, and S. Li. paper
  47. Multi-scale positive sample refinement for few-shot object detection, in ECCV, 2020. J. Wu, S. Liu, D. Huang, and Y. Wang. paper code
  48. Large-scale few-shot learning via multi-modal knowledge discovery, in ECCV, 2020. S. Wang, J. Yue, J. Liu, Q. Tian, and M. Wang. paper
  49. Graph convolutional networks for learning with few clean and many noisy labels, in ECCV, 2020. A. Iscen, G. Tolias, Y. Avrithis, O. Chum, and C. Schmid. paper
  50. Self-supervised few-shot learning on point clouds, in NeurIPS, 2020. C. Sharma, and M. Kaul. paper code
  51. Restoring negative information in few-shot object detection, in NeurIPS, 2020. Y. Yang, F. Wei, M. Shi, and G. Li. paper code
  52. Few-shot image generation with elastic weight consolidation, in NeurIPS, 2020. Y. Li, R. Zhang, J. Lu, and E. Shechtman. paper
  53. Few-shot visual reasoning with meta-analogical contrastive learning, in NeurIPS, 2020. Y. Kim, J. Shin, E. Yang, and S. J. Hwang. paper
  54. CrossTransformers: spatially-aware few-shot transfer, in NeurIPS, 2020. C. Doersch, A. Gupta, and A. Zisserman. paper
  55. Make one-shot video object segmentation efficient again, in NeurIPS, 2020. T. Meinhardt, and L. Leal-Taixé. paper code
  56. Frustratingly simple few-shot object detection, in ICML, 2020. X. Wang, T. E. Huang, J. Gonzalez, T. Darrell, and F. Yu. paper code
  57. Adversarial style mining for one-shot unsupervised domain adaptation, in NeurIPS, 2020. Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang. paper code
  58. Disentangling 3D prototypical networks for few-shot concept learning, in ICLR, 2021. M. Prabhudesai, S. Lal, D. Patil, H. Tung, A. W. Harley, and K. Fragkiadaki. paper
  59. Learning normal dynamics in videos with meta prototype network, in CVPR, 2021. H. Lv, C. Chen, Z. Cui, C. Xu, Y. Li, and J. Yang. paper code
  60. Learning dynamic alignment via meta-filter for few-shot learning, in CVPR, 2021. C. Xu, Y. Fu, C. Liu, C. Wang, J. Li, F. Huang, L. Zhang, and X. Xue. paper
  61. Delving deep into many-to-many attention for few-shot video object segmentation, in CVPR, 2021. H. Chen, H. Wu, N. Zhao, S. Ren, and S. He. paper code
  62. Adaptive prototype learning and allocation for few-shot segmentation, in CVPR, 2021. G. Li, V. Jampani, L. Sevilla-Lara, D. Sun, J. Kim, and J. Kim. paper code
  63. FAPIS: A few-shot anchor-free part-based instance segmenter, in CVPR, 2021. K. Nguyen, and S. Todorovic. paper
  64. FSCE: Few-shot object detection via contrastive proposal encoding, in CVPR, 2021. B. Sun, B. Li, S. Cai, Y. Yuan, and C. Zhang. paper code
  65. Few-shot 3D point cloud semantic segmentation, in CVPR, 2021. N. Zhao, T. Chua, and G. H. Lee. paper code
  66. Generalized few-shot object detection without forgetting, in CVPR, 2021. Z. Fan, Y. Ma, Z. Li, and J. Sun. paper
  67. Few-shot human motion transfer by personalized geometry and texture modeling, in CVPR, 2021. Z. Huang, X. Han, J. Xu, and T. Zhang. paper code
  68. Labeled from unlabeled: Exploiting unlabeled data for few-shot deep HDR deghosting, in CVPR, 2021. K. R. Prabhakar, G. Senthil, S. Agrawal, R. V. Babu, and R. K. S. S. Gorthi. paper
  69. Few-shot transformation of common actions into time and space, in CVPR, 2021. P. Yang, P. Mettes, and C. G. M. Snoek. paper code
  70. Temporal-relational CrossTransformers for few-shot action recognition, in CVPR, 2021. T. Perrett, A. Masullo, T. Burghardt, M. Mirmehdi, and D. Damen. paper
  71. pixelNeRF: Neural radiance fields from one or few images, in CVPR, 2021. A. Yu, V. Ye, M. Tancik, and A. Kanazawa. paper code
  72. Hallucination improves few-shot object detection, in CVPR, 2021. W. Zhang, and Y. Wang. paper
  73. Few-shot object detection via classification refinement and distractor retreatment, in CVPR, 2021. Y. Li, H. Zhu, Y. Cheng, W. Wang, C. S. Teo, C. Xiang, P. Vadakkepat, and T. H. Lee. paper
  74. Dense relation distillation with context-aware aggregation for few-shot object detection, in CVPR, 2021. H. Hu, S. Bai, A. Li, J. Cui, and L. Wang. paper code
  75. Few-shot segmentation without meta-learning: A good transductive inference is all you need? , in CVPR, 2021. M. Boudiaf, H. Kervadec, Z. I. Masud, P. Piantanida, I. B. Ayed, and J. Dolz. paper code
  76. Few-shot image generation via cross-domain correspondence, in CVPR, 2021. U. Ojha, Y. Li, J. Lu, A. A. Efros, Y. J. Lee, E. Shechtman, and R. Zhang. paper
  77. Self-guided and cross-guided learning for few-shot segmentation, in CVPR, 2021. B. Zhang, J. Xiao, and T. Qin. paper code
  78. Anti-aliasing semantic reconstruction for few-shot semantic segmentation, in CVPR, 2021. B. Liu, Y. Ding, J. Jiao, X. Ji, and Q. Ye. paper
  79. Beyond max-margin: Class margin equilibrium for few-shot object detection, in CVPR, 2021. B. Li, B. Yang, C. Liu, F. Liu, R. Ji, and Q. Ye. paper code
  80. Incremental few-shot instance segmentation, in CVPR, 2021. D. A. Ganea, B. Boom, and R. Poppe. paper code
  81. Scale-aware graph neural network for few-shot semantic segmentation, in CVPR, 2021. G. Xie, J. Liu, H. Xiong, and L. Shao. paper
  82. Semantic relation reasoning for shot-stable few-shot object detection, in CVPR, 2021. C. Zhu, F. Chen, U. Ahmed, Z. Shen, and M. Savvides. paper
  83. Accurate few-shot object detection with support-query mutual guidance and hybrid loss, in CVPR, 2021. L. Zhang, S. Zhou, J. Guan, and J. Zhang. paper
  84. Transformation invariant few-shot object detection, in CVPR, 2021. A. Li, and Z. Li. paper
  85. MetaHTR: Towards writer-adaptive handwritten text recognition, in CVPR, 2021. A. K. Bhunia, S. Ghose, A. Kumar, P. N. Chowdhury, A. Sain, and Y. Song. paper
  86. What if we only use real datasets for scene text recognition? Toward scene text recognition with fewer labels, in CVPR, 2021. J. Baek, Y. Matsui, and K. Aizawa. paper code
  87. Few-shot font generation with localized style representations and factorization, in AAAI, 2021. S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. paper code
  88. Attributes-guided and pure-visual attention alignment for few-shot recognition, in AAAI, 2021. S. Huang, M. Zhang, Y. Kang, and D. Wang. paper code
  89. One-shot face reenactment using appearance adaptive normalization, in AAAI, 2021. G. Yao, Y. Yuan, T. Shao, S. Li, S. Liu, Y. Liu, M. Wang, and K. Zhou. paper
  90. FL-MSRE: A few-shot learning based approach to multimodal social relation extraction, in AAAI, 2021. H. Wan, M. Zhang, J. Du, Z. Huang, Y. Yang, and J. Z. Pan. paper code
  91. StarNet: Towards weakly supervised few-shot object detection, in AAAI, 2021. L. Karlinsky, J. Shtok, A. Alfassy, M. Lichtenstein, S. Harary, E. Schwartz, S. Doveh, P. Sattigeri, R. Feris, A. Bronstein, and R. Giryes. paper code
  92. Progressive one-shot human parsing, in AAAI, 2021. H. He, J. Zhang, B. Thuraisingham, and D. Tao. paper code
  93. Knowledge is power: Hierarchical-knowledge embedded meta-learning for visual reasoning in artistic domains, in KDD, 2021. W. Zheng, L. Yan, C. Gou, and F.-Y. Wang. paper
  94. MEDA: Meta-learning with data augmentation for few-shot text classification, in IJCAI, 2021. P. Sun, Y. Ouyang, W. Zhang, and X.-Y. Dai. paper
  95. Learning implicit temporal alignment for few-shot video classification, in IJCAI, 2021. S. Zhang, J. Zhou, and X. He. paper code
  96. Few-shot neural human performance rendering from sparse RGBD videos, in IJCAI, 2021. A. Pang, X. Chen, H. Luo, M. Wu, J. Yu, and L. Xu. paper
  97. Uncertainty-aware few-shot image classification, in IJCAI, 2021. Z. Zhang, C. Lan, W. Zeng, Z. Chen, and S. Chan. paper
  98. Few-shot learning with part discovery and augmentation from unlabeled images, in IJCAI, 2021. W. Chen, C. Si, W. Wang, L. Wang, Z. Wang, and T. Tan. paper
  99. Few-shot partial-label learning, in IJCAI, 2021. Y. Zhao, G. Yu, L. Liu, Z. Yan, L. Cui, and C. Domeniconi. paper
  100. One-shot affordance detection, in IJCAI, 2021. H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. paper
  101. DeFRCN: Decoupled faster R-CNN for few-shot object detection, in ICCV, 2021. L. Qiao, Y. Zhao, Z. Li, X. Qiu, J. Wu, and C. Zhang. paper
  102. Learning meta-class memory for few-shot semantic segmentation, in ICCV, 2021. Z. Wu, X. Shi, G. Lin, and J. Cai. paper
  103. UVStyle-Net: Unsupervised few-shot learning of 3D style similarity measure for B-Reps, in ICCV, 2021. P. Meltzer, H. Shayani, A. Khasahmadi, P. K. Jayaraman, A. Sanghi, and J. Lambourne. paper
  104. LoFGAN: Fusing local representations for few-shot image generation, in ICCV, 2021. Z. Gu, W. Li, J. Huo, L. Wang, and Y. Gao. paper
  105. Recurrent mask refinement for few-shot medical image segmentation, in ICCV, 2021. H. Tang, X. Liu, S. Sun, X. Yan, and X. Xie. paper code
  106. H3D-Net: Few-shot high-fidelity 3D head reconstruction, in ICCV, 2021. E. Ramon, G. Triginer, J. Escur, A. Pumarola, J. Garcia, X. Giró-i-Nieto, and F. Moreno-Noguer. paper
  107. Learned spatial representations for few-shot talking-head synthesis, in ICCV, 2021. M. Meshry, S. Suri, L. S. Davis, and A. Shrivastava. paper
  108. Putting NeRF on a diet: Semantically consistent few-shot view synthesis, in ICCV, 2021. A. Jain, M. Tancik, and P. Abbeel. paper
  109. Hypercorrelation squeeze for few-shot segmentation, in ICCV, 2021. J. Min, D. Kang, and M. Cho. paper code
  110. Few-shot semantic segmentation with cyclic memory network, in ICCV, 2021. G. Xie, H. Xiong, J. Liu, Y. Yao, and L. Shao. paper
  111. Simpler is better: Few-shot semantic segmentation with classifier weight transformer, in ICCV, 2021. Z. Lu, S. He, X. Zhu, L. Zhang, Y. Song, and T. Xiang. paper code
  112. Unsupervised few-shot action recognition via action-appearance aligned meta-adaptation, in ICCV, 2021. J. Patravali, G. Mittal, Y. Yu, F. Li, and M. Chen. paper
  113. Multiple heads are better than one: few-shot font generation with multiple localized experts, in ICCV, 2021. S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. paper code
  114. Mining latent classes for few-shot segmentation, in ICCV, 2021. L. Yang, W. Zhuo, L. Qi, Y. Shi, and Y. Gao. paper code
  115. Partner-assisted learning for few-shot image classification, in ICCV, 2021. J. Ma, H. Xie, G. Han, S. Chang, A. Galstyan, and W. Abd-Almageed. paper
  116. Hierarchical graph attention network for few-shot visual-semantic learning, in ICCV, 2021. C. Yin, K. Wu, Z. Che, B. Jiang, Z. Xu, and J. Tang. paper
  117. Video pose distillation for few-shot, fine-grained sports action recognition, in ICCV, 2021. J. Hong, M. Fisher, M. Gharbi, and K. Fatahalian. paper
  118. Universal-prototype enhancing for few-shot object detection, in ICCV, 2021. A. Wu, Y. Han, L. Zhu, and Y. Yang. paper code
  119. Query adaptive few-shot object detection with heterogeneous graph convolutional networks, in ICCV, 2021. G. Han, Y. He, S. Huang, J. Ma, and S. Chang. paper
  120. Few-shot visual relationship co-localization, in ICCV, 2021. R. Teotia, V. Mishra, M. Maheshwari, and A. Mishra. paper code
  121. Shallow Bayesian meta learning for real-world few-shot recognition, in ICCV, 2021. X. Zhang, D. Meng, H. Gouk, and T. M. Hospedales. paper code
  122. Super-resolving cross-domain face miniatures by peeking at one-shot exemplar, in ICCV, 2021. P. Li, X. Yu, and Y. Yang. paper
  123. Few-shot segmentation via cycle-consistent transformer, in NeurIPS, 2021. G. Zhang, G. Kang, Y. Yang, and Y. Wei. paper
  124. Generalized and discriminative few-shot object detection via SVD-dictionary enhancement, in NeurIPS, 2021. A. WU, S. Zhao, C. Deng, and W. Liu. paper
  125. Re-ranking for image retrieval and transductive few-shot classification, in NeurIPS, 2021. X. SHEN, Y. Xiao, S. Hu, O. Sbai, and M. Aubry. paper
  126. Neural view synthesis and matching for semi-supervised few-shot learning of 3D pose, in NeurIPS, 2021. A. Wang, S. Mei, A. L. Yuille, and A. Kortylewski. paper
  127. MetaAvatar: Learning animatable clothed human models from few depth images, in NeurIPS, 2021. S. Wang, M. Mihajlovic, Q. Ma, A. Geiger, and S. Tang. paper
  128. Few-shot object detection via association and discrimination, in NeurIPS, 2021. Y. Cao, J. Wang, Y. Jin, T. Wu, K. Chen, Z. Liu, and D. Lin. paper
  129. Rectifying the shortcut learning of background for few-shot learning, in NeurIPS, 2021. X. Luo, L. Wei, L. Wen, J. Yang, L. Xie, Z. Xu, and Q. Tian. paper
  130. D2C: Diffusion-decoding models for few-shot conditional generation, in NeurIPS, 2021. A. Sinha, J. Song, C. Meng, and S. Ermon. paper
  131. Few-shot backdoor attacks on visual object tracking, in ICLR, 2022. Y. Li, H. Zhong, X. Ma, Y. Jiang, and S. Xia. paper code
  132. Temporal alignment prediction for supervised representation learning and few-shot sequence classification, in ICLR, 2022. B. Su, and J. Wen. paper code
  133. Learning non-target knowledge for few-shot semantic segmentation, in CVPR, 2022. Y. Liu, N. Liu, Q. Cao, X. Yao, J. Han, and L. Shao. paper
  134. Learning what not to segment: A new perspective on few-shot segmentation, in CVPR, 2022. C. Lang, G. Cheng, B. Tu, and J. Han. paper code
  135. Few-shot keypoint detection with uncertainty learning for unseen species, in CVPR, 2022. C. Lu, and P. Koniusz. paper
  136. XMP-Font: Self-supervised cross-modality pre-training for few-shot font generation, in CVPR, 2022. W. Liu, F. Liu, F. Ding, Q. He, and Z. Yi. paper
  137. Spatio-temporal relation modeling for few-shot action recognition, in CVPR, 2022. A. Thatipelli, S. Narayan, S. Khan, R. M. Anwer, F. S. Khan, and B. Ghanem. paper code
  138. Attribute group editing for reliable few-shot image generation, in CVPR, 2022. G. Ding, X. Han, S. Wang, S. Wu, X. Jin, D. Tu, and Q. Huang. paper code
  139. Few-shot backdoor defense using Shapley estimation, in CVPR, 2022. J. Guan, Z. Tu, R. He, and D. Tao. paper
  140. Hybrid relation guided set matching for few-shot action recognition, in CVPR, 2022. X. Wang, S. Zhang, Z. Qing, M. Tang, Z. Zuo, C. Gao, R. Jin, and N. Sang. paper code
  141. Label, verify, correct: A simple few shot object detection method, in CVPR, 2022. P. Kaul, W. Xie, and A. Zisserman. paper
  142. InfoNeRF: Ray entropy minimization for few-shot neural volume rendering, in CVPR, 2022. M. Kim, S. Seo, and B. Han. paper
  143. A closer look at few-shot image generation, in CVPR, 2022. Y. Zhao, H. Ding, H. Huang, and N. Cheung. paper code
  144. Motion-modulated temporal fragment alignment network for few-shot action recognition, in CVPR, 2022. J. Wu, T. Zhang, Z. Zhang, F. Wu, and Y. Zhang. paper
  145. Kernelized few-shot object detection with efficient integral aggregation, in CVPR, 2022. S. Zhang, L. Wang, N. Murray, and P. Koniusz. paper code
  146. FS6D: Few-shot 6D pose estimation of novel objects, in CVPR, 2022. Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen. paper
  147. Look closer to supervise better: One-shot font generation via component-based discriminator, in CVPR, 2022. Y. Kong, C. Luo, W. Ma, Q. Zhu, S. Zhu, N. Yuan, and L. Jin. paper
  148. Generalized few-shot semantic segmentation, in CVPR, 2022. Z. Tian, X. Lai, L. Jiang, S. Liu, M. Shu, H. Zhao, and J. Jia. paper code
  149. Which images to label for few-shot medical landmark detection?, in CVPR, 2022. Q. Quan, Q. Yao, J. Li, and S. K. Zhou. paper
  150. Dynamic prototype convolution network for few-shot semantic segmentation, in CVPR, 2022. J. Liu, Y. Bao, G. Xie, H. Xiong, J. Sonke, and E. Gavves. paper
  151. OSOP: A multi-stage one shot object pose estimation framework, in CVPR, 2022. I. Shugurov, F. Li, B. Busam, and S. Ilic. paper
  152. Semantic-aligned fusion transformer for one-shot object detection, in CVPR, 2022. Y. Zhao, X. Guo, and Y. Lu. paper
  153. OnePose: One-shot object pose estimation without CAD models, in CVPR, 2022. J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou. paper code
  154. Few-shot object detection with fully cross-transformer, in CVPR, 2022. G. Han, J. Ma, S. Huang, L. Chen, and S. Chang. paper
  155. Learning to memorize feature hallucination for one-shot image generation, in CVPR, 2022. Y. Xie, Y. Fu, Y. Tai, Y. Cao, J. Zhu, and C. Wang. paper
  156. Few-shot font generation by learning fine-grained local styles, in CVPR, 2022. L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han, J. Liu, E. Ding, and J. Wang. paper
  157. Balanced and hierarchical relation learning for one-shot object detection, in CVPR, 2022. H. Yang, S. Cai, H. Sheng, B. Deng, J. Huang, X. Hua, Y. Tang, and Y. Zhang. paper
  158. Few-shot head swapping in the wild, in CVPR, 2022. C. Shu, H. Wu, H. Zhou, J. Liu, Z. Hong, C. Ding, J. Han, J. Liu, E. Ding, and J. Wang. paper
  159. Integrative few-shot learning for classification and segmentation, in CVPR, 2022. D. Kang, and M. Cho. paper
  160. Attribute surrogates learning and spectral tokens pooling in transformers for few-shot learning, in CVPR, 2022. Y. He, W. Liang, D. Zhao, H. Zhou, W. Ge, Y. Yu, and W. Zhang. paper code
  161. Task discrepancy maximization for fine-grained few-shot classification, in CVPR, 2022. S. Lee, W. Moon, and J. Heo. paper

Robotics

  1. Towards one shot learning by imitation for humanoid robots, in ICRA, 2010. Y. Wu and Y. Demiris. paper
  2. Learning manipulation actions from a few demonstrations, in ICRA, 2013. N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss. paper
  3. Learning assistive strategies from a few user-robot interactions: Model-based reinforcement learning approach, in ICRA, 2016. M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto. paper
  4. One-shot imitation learning, in NeurIPS, 2017. Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba. paper
  5. Meta-learning language-guided policy learning, in ICLR, 2019. J. D. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. DeNero, P. Abbeel, and S. Levine. paper
  6. Meta reinforcement learning with autonomous inference of subtask dependencies, in ICLR, 2020. S. Sohn, H. Woo, J. Choi, and H. Lee. paper
  7. Watch, try, learn: Meta-learning from demonstrations and rewards, in ICLR, 2020. A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan, S. Levine, and C. Finn. paper
  8. Few-shot Bayesian imitation learning with logical program policies, in AAAI, 2020. T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum. paper
  9. One solution is not all you need: Few-shot extrapolation via structured MaxEnt RL, in NeurIPS, 2020. S. Kumar, A. Kumar, S. Levine, and C. Finn. paper
  10. Bowtie networks: Generative modeling for joint few-shot recognition and novel-view synthesis, in ICLR, 2021. Z. Bao, Y. Wang, and M. Hebert. paper
  11. Demonstration-conditioned reinforcement learning for few-shot imitation, in ICML, 2021. C. R. Dance, J. Perez, and T. Cachet. paper
  12. Hierarchical few-shot imitation with skill transition models, in ICLR, 2022. K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, and M. Laskin. paper

Natural Language Processing

  1. High-risk learning: Acquiring new word vectors from tiny data, in EMNLP, 2017. A. Herbelot and M. Baroni. paper
  2. MetaEXP: Interactive explanation and exploration of large knowledge graphs, in TheWebConf, 2018. F. Behrens, S. Bischoff, P. Ladenburger, J. Rückin, L. Seidel, F. Stolp, M. Vaichenker, A. Ziegler, D. Mottin, F. Aghaei, E. Müller, M. Preusse, N. Müller, and M. Hunger. paper code
  3. Few-shot representation learning for out-of-vocabulary words, in ACL, 2019. Z. Hu, T. Chen, K.-W. Chang, and Y. Sun. paper
  4. Learning to customize model structures for few-shot dialogue generation tasks, in ACL, 2020. Y. Song, Z. Liu, W. Bi, R. Yan, and M. Zhang. paper
  5. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network, in ACL, 2020. Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, and T. Liu. paper
  6. Meta-reinforced multi-domain state generator for dialogue systems, in ACL, 2020. Y. Huang, J. Feng, M. Hu, X. Wu, X. Du, and S. Ma. paper
  7. Few-shot knowledge graph completion, in AAAI, 2020. C. Zhang, H. Yao, C. Huang, M. Jiang, Z. Li, and N. V. Chawla. paper
  8. Universal natural language processing with limited annotations: Try few-shot textual entailment as a start, in EMNLP, 2020. W. Yin, N. F. Rajani, D. Radev, R. Socher, and C. Xiong. paper code
  9. Simple and effective few-shot named entity recognition with structured nearest neighbor learning, in EMNLP, 2020. Y. Yang, and A. Katiyar. paper code
  10. Discriminative nearest neighbor few-shot intent detection by transferring natural language inference, in EMNLP, 2020. J. Zhang, K. Hashimoto, W. Liu, C. Wu, Y. Wan, P. Yu, R. Socher, and C. Xiong. paper code
  11. Few-shot learning for opinion summarization, in EMNLP, 2020. A. Bražinskas, M. Lapata, and I. Titov. paper code
  12. Adaptive attentional network for few-shot knowledge graph completion, in EMNLP, 2020. J. Sheng, S. Guo, Z. Chen, J. Yue, L. Wang, T. Liu, and H. Xu. paper code
  13. Few-shot complex knowledge base question answering via meta reinforcement learning, in EMNLP, 2020. Y. Hua, Y. Li, G. Haffari, G. Qi, and T. Wu. paper code
  14. Self-supervised meta-learning for few-shot natural language classification tasks, in EMNLP, 2020. T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum. paper code
  15. Uncertainty-aware self-training for few-shot text classification, in NeurIPS, 2020. S. Mukherjee, and A. Awadallah. paper code
  16. Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction, in NeurIPS, 2020:. J. Baek, D. B. Lee, and S. J. Hwang. paper code
  17. MetaNER: Named entity recognition with meta-learning, in TheWebConf, 2020. J. Li, S. Shang, and L. Shao. paper
  18. Conditionally adaptive multi-task learning: Improving transfer learning in NLP using fewer parameters & less data, in ICLR, 2021. J. Pilault, A. E. hattami, and C. Pal. paper code
  19. Revisiting few-sample BERT fine-tuning, in ICLR, 2021. T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and Y. Artzi. paper code
  20. Few-shot conversational dense retrieval, in SIGIR, 2021. S. Yu, Z. Liu, C. Xiong, T. Feng, and Z. Liu. paper code
  21. Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion, in SIGIR, 2021. G. Niu, Y. Li, C. Tang, R. Geng, J. Dai, Q. Liu, H. Wang, J. Sun, F. Huang, and L. Si. paper
  22. Few-shot language coordination by modeling theory of mind, in ICML, 2021. H. Zhu, G. Neubig, and Y. Bisk. paper code
  23. Graph-evolving meta-learning for low-resource medical dialogue generation, in AAAI, 2021. S. Lin, P. Zhou, X. Liang, J. Tang, R. Zhao, Z. Chen, and L. Lin. paper
  24. KEML: A knowledge-enriched meta-learning framework for lexical relation classification, in AAAI, 2021. C. Wang, M. Qiu, J. Huang, and X. He. paper
  25. Few-shot learning for multi-label intent detection, in AAAI, 2021. Y. Hou, Y. Lai, Y. Wu, W. Che, and T. Liu. paper code
  26. SALNet: Semi-supervised few-shot text classification with attention-based lexicon construction, in AAAI, 2021. J.-H. Lee, S.-K. Ko, and Y.-S. Han. paper
  27. Learning from my friends: Few-shot personalized conversation systems via social networks, in AAAI, 2021. Z. Tian, W. Bi, Z. Zhang, D. Lee, Y. Song, and N. L. Zhang. paper code
  28. Relative and absolute location embedding for few-shot node classification on graph, in AAAI, 2021. Z. Liu, Y. Fang, C. Liu, and S. C.H. Hoi. paper
  29. Few-shot question answering by pretraining span selection, in ACL-IJCNLP, 2021. O. Ram, Y. Kirstain, J. Berant, A. Globerson, and O. Levy. paper code
  30. A closer look at few-shot crosslingual transfer: The choice of shots matters, in ACL-IJCNLP, 2021. M. Zhao, Y. Zhu, E. Shareghi, I. Vulic, R. Reichart, A. Korhonen, and H. Schütze. paper code
  31. Learning from miscellaneous other-classwords for few-shot named entity recognition, in ACL-IJCNLP, 2021. M. Tong, S. Wang, B. Xu, Y. Cao, M. Liu, L. Hou, and J. Li. paper code
  32. Distinct label representations for few-shot text classification, in ACL-IJCNLP, 2021. S. Ohashi, J. Takayama, T. Kajiwara, and Y. Arase. paper code
  33. Entity concept-enhanced few-shot relation extraction, in ACL-IJCNLP, 2021. S. Yang, Y. Zhang, G. Niu, Q. Zhao, and S. Pu. paper code
  34. On training instance selection for few-shot neural text generation, in ACL-IJCNLP, 2021. E. Chang, X. Shen, H.-S. Yeh, and V. Demberg. paper code
  35. Unsupervised neural machine translation for low-resource domains via meta-learning, in ACL-IJCNLP, 2021. C. Park, Y. Tae, T. Kim, S. Yang, M. A. Khan, L. Park, and J. Choo. paper code
  36. Meta-learning with variational semantic memory for word sense disambiguation, in ACL-IJCNLP, 2021. Y. Du, N. Holla, X. Zhen, C. Snoek, and E. Shutova. paper code
  37. Multi-label few-shot learning for aspect category detection, in ACL-IJCNLP, 2021. M. Hu, S. Z. H. Guo, C. Xue, H. Gao, T. Gao, R. Cheng, and Z. Su. paper
  38. TextSETTR: Few-shot text style extraction and tunable targeted restyling, in ACL-IJCNLP, 2021. P. Rileya, N. Constantb, M. Guob, G. Kumarc, D. Uthusb, and Z. Parekh. paper
  39. Few-shot text ranking with meta adapted synthetic weak supervision, in ACL-IJCNLP, 2021. S. Sun, Y. Qian, Z. Liu, C. Xiong, K. Zhang, J. Bao, Z. Liu, and P. Bennett. paper code
  40. PROTAUGMENT: Intent detection meta-learning through unsupervised diverse paraphrasing, in ACL-IJCNLP, 2021. T. Dopierre, C. Gravier, and W. Logerais. paper code
  41. AUGNLG: Few-shot natural language generation using self-trained data augmentation, in ACL-IJCNLP, 2021. X. Xu, G. Wang, Y.-B. Kim, and S. Lee. paper code
  42. Meta self-training for few-shot neural sequence labeling, in KDD, 2021. Y. Wang, S. Mukherjee, H. Chu, Y. Tu, M. Wu, J. Gao, and A. H. Awadallah. paper code
  43. Knowledge-enhanced domain adaptation in few-shot relation classification, in KDD, 2021. J. Zhang, J. Zhu, Y. Yang, W. Shi, C. Zhang, and H. Wang. paper code
  44. Few-shot text classification with triplet networks, data augmentation, and curriculum learning, in NAACL-HLT, 2021. J. Wei, C. Huang, S. Vosoughi, Y. Cheng, and S. Xu. paper code
  45. Few-shot intent classification and slot filling with retrieved examples, in NAACL-HLT, 2021. D. Yu, L. He, Y. Zhang, X. Du, P. Pasupat, and Q. Li. paper
  46. Non-parametric few-shot learning for word sense disambiguation, in NAACL-HLT, 2021. H. Chen, M. Xia, and D. Chen. paper code
  47. Towards few-shot fact-checking via perplexity, in NAACL-HLT, 2021. N. Lee, Y. Bang, A. Madotto, and P. Fung. paper
  48. ConVEx: Data-efficient and few-shot slot labeling, in NAACL-HLT, 2021. M. Henderson, and I. Vulic. paper
  49. Few-shot text generation with natural language instructions, in EMNLP, 2021. T. Schick, and H. Schütze. paper
  50. Towards realistic few-shot relation extraction, in EMNLP, 2021. S. Brody, S. Wu, and A. Benton. paper code
  51. Few-shot emotion recognition in conversation with sequential prototypical networks, in EMNLP, 2021. G. Guibon, M. Labeau, H. Flamein, L. Lefeuvre, and C. Clavel. paper code
  52. Learning prototype representations across few-shot tasks for event detection, in EMNLP, 2021. V. Lai, F. Dernoncourt, and T. H. Nguyen. paper
  53. Exploring task difficulty for few-shot relation extraction, in EMNLP, 2021. J. Han, B. Cheng, and W. Lu. paper code
  54. Honey or poison? Solving the trigger curse in few-shot event detection via causal intervention, in EMNLP, 2021. J. Chen, H. Lin, X. Han, and L. Sun. paper code
  55. Nearest neighbour few-shot learning for cross-lingual classification, in EMNLP, 2021. M. S. Bari, B. Haider, and S. Mansour. paper
  56. Knowledge-aware meta-learning for low-resource text classification, in EMNLP, 2021. H. Yao, Y. Wu, M. Al-Shedivat, and E. P. Xing. paper code
  57. Few-shot named entity recognition: An empirical baseline study, in EMNLP, 2021. J. Huang, C. Li, K. Subudhi, D. Jose, S. Balakrishnan, W. Chen, B. Peng, J. Gao, and J. Han. paper
  58. MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision, in EMNLP, 2021. Z. Li, D. Zhang, T. Cao, Y. Wei, Y. Song, and B. Yin. paper
  59. Meta-LMTC: Meta-learning for large-scale multi-label text classification, in EMNLP, 2021. R. Wang, X. Su, S. Long, X. Dai, S. Huang, and J. Chen. paper
  60. Ontology-enhanced prompt-tuning for few-shot learning., in TheWebConf, 2022. H. Ye, N. Zhang, S. Deng, X. Chen, H. Chen, F. Xiong, X. Chen, and H. Chen. paper
  61. EICO: Improving few-shot text classification via explicit and implicit consistency regularization, in Findings of ACL, 2022. L. Zhao, and C. Yao. paper
  62. Dialogue summaries as dialogue states (DS2), template-guided summarization for few-shot dialogue state tracking, in Findings of ACL, 2022. J. Shin, H. Yu, H. Moon, A. Madotto, and J. Park. paper code
  63. A few-shot semantic parser for wizard-of-oz dialogues with the precise thingtalk representation, in Findings of ACL, 2022. G. Campagna, S. J. Semnani, R. Kearns, L. J. K. Sato, S. Xu, and M. S. Lam. paper
  64. Multi-stage prompting for knowledgeable dialogue generation, in Findings of ACL, 2022. Z. Liu, M. Patwary, R. Prenger, S. Prabhumoye, W. Ping, M. Shoeybi, and B. Catanzaro. paper code
  65. Few-shot named entity recognition with self-describing networks, in ACL, 2022. J. Chen, Q. Liu, H. Lin, X. Han, and L. Sun. paper code
  66. CLIP models are few-shot learners: Empirical studies on VQA and visual entailment, in ACL, 2022. H. Song, L. Dong, W. Zhang, T. Liu, and F. Wei. paper
  67. CONTaiNER: Few-shot named entity recognition via contrastive learning, in ACL, 2022. S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang. paper code
  68. Few-shot controllable style transfer for low-resource multilingual settings, in ACL, 2022. K. Krishna, D. Nathani, X. Garcia, B. Samanta, and P. Talukdar. paper
  69. Label semantic aware pre-training for few-shot text classification, in ACL, 2022. A. Mueller, J. Krone, S. Romeo, S. Mansour, E. Mansimov, Y. Zhang, and D. Roth. paper
  70. Inverse is better! Fast and accurate prompt for few-shot slot tagging, in Findings of ACL, 2022. Y. Hou, C. Chen, X. Luo, B. Li, and W. Che. paper
  71. Label semantics for few shot named entity recognition, in Findings of ACL, 2022. J. Ma, M. Ballesteros, S. Doss, R. Anubhai, S. Mallya, Y. Al-Onaizan, and D. Roth. paper
  72. Hierarchical recurrent aggregative generation for few-shot NLG, in Findings of ACL, 2022. G. Zhou, G. Lampouras, and I. Iacobacci. paper
  73. Towards few-shot entity recognition in document images: A label-aware sequence-to-sequence framework, in Findings of ACL, 2022. Z. Wang, and J. Shang. paper
  74. A good prompt is worth millions of parameters: Low-resource prompt-based learning for vision-language models, in ACL, 2022. W. Jin, Y. Cheng, Y. Shen, W. Chen, and X. Ren. paper code
  75. Generated knowledge prompting for commonsense reasoning, in ACL, 2022. J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, and H. Hajishirzi. paper code
  76. End-to-end modeling via information tree for one-shot natural language spatial video grounding, in ACL, 2022. M. Li, T. Wang, H. Zhang, S. Zhang, Z. Zhao, J. Miao, W. Zhang, W. Tan, J. Wang, P. Wang, S. Pu, and F. Wu. paper
  77. Leveraging task transferability to meta-learning for clinical section classification with limited data, in ACL, 2022. Z. Chen, J. Kim, R. Bhakta, and M. Y. Sir. paper
  78. Improving meta-learning for low-resource text classification and generation via memory imitation, in ACL, 2022. Y. Zhao, Z. Tian, H. Yao, Y. Zheng, D. Lee, Y. Song, J. Sun, and N. L. Zhang. paper
  79. A simple yet effective relation information guided approach for few-shot relation extraction, in Findings of ACL, 2022. Y. Liu, J. Hu, X. Wan, and T. Chang. paper code
  80. Decomposed meta-learning for few-shot named entity recognition, in Findings of ACL, 2022. T. Ma, H. Jiang, Q. Wu, T. Zhao, and C. Lin. paper code
  81. Meta-learning for fast cross-lingual adaptation in dependency parsing, in ACL, 2022. A. Langedijk, V. Dankers, P. Lippe, S. Bos, B. C. Guevara, H. Yannakoudakis, and E. Shutova. paper code
  82. Enhancing cross-lingual natural language inference by prompt-learning from cross-lingual templates, in ACL, 2022. K. Qi, H. Wan, J. Du, and H. Chen. paper code

Acoustic Signal Processing

  1. One-shot learning of generative speech concepts, in CogSci, 2014. B. Lake, C.-Y. Lee, J. Glass, and J. Tenenbaum. paper
  2. Machine speech chain with one-shot speaker adaptation, INTERSPEECH, 2018. A. Tjandra, S. Sakti, and S. Nakamura. paper
  3. Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion, INTERSPEECH, 2018. S. H. Mohammadi and T. Kim. paper
  4. Few-shot audio classification with attentional graph neural networks, INTERSPEECH, 2019. S. Zhang, Y. Qin, K. Sun, and Y. Lin. paper
  5. One-shot voice conversion with disentangled representations by leveraging phonetic posteriorgrams, INTERSPEECH, 2019. S. H. Mohammadi, and T. Kim. paper
  6. One-shot voice conversion with global speaker embeddings, INTERSPEECH, 2019. H. Lu, Z. Wu, D. Dai, R. Li, S. Kang, J. Jia, and H. Meng. paper
  7. One-shot voice conversion by separating speaker and content representations with instance normalization, INTERSPEECH, 2019. J.-C. Chou, and H.-Y. Lee. paper
  8. Audio2Head: Audio-driven one-shot talking-head generation with natural head motion, in IJCAI, 2021. S. Wang, L. Li, Y. Ding, C. Fan, and X. Yu. paper

Recommendation

  1. A meta-learning perspective on cold-start recommendations for items, in NeurIPS, 2017. M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. paper
  2. MeLU: Meta-learned user preference estimator for cold-start recommendation, in KDD, 2019. H. Lee, J. Im, S. Jang, H. Cho, and S. Chung. paper code
  3. Sequential scenario-specific meta learner for online recommendation, in KDD, 2019. Z. Du, X. Wang, H. Yang, J. Zhou, and J. Tang. paper code
  4. Few-shot learning for new user recommendation in location-based social networks, in TheWebConf, 2020. R. Li, X. Wu, X. Chen, and W. Wang. paper
  5. MAMO: Memory-augmented meta-optimization for cold-start recommendation, in KDD, 2020. M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu. paper code
  6. Meta-learning on heterogeneous information networks for cold-start recommendation, in KDD, 2020. Y. Lu, Y. Fang, and C. Shi. paper code
  7. MetaSelector: Meta-learning for recommendation with user-level adaptive model selection, in TheWebConf, 2020. M. Luo, F. Chen, P. Cheng, Z. Dong, X. He, J. Feng, and Z. Li. paper
  8. Fast adaptation for cold-start collaborative filtering with meta-learning, in ICDM, 2020. T. Wei, Z. Wu, R. Li, Z. Hu, F. Feng, X. H. Sun, and W. Wang. paper
  9. Preference-adaptive meta-learning for cold-start recommendation, in IJCAI, 2021. L. Wang, B. Jin, Z. Huang, H. Zhao, D. Lian, Q. Liu, and E. Chen. paper
  10. Meta-learning helps personalized product search., in TheWebConf, 2022. B. Wu, Z. Meng, Q. Zhang, and S. Liang. paper
  11. Alleviating cold-start problem in CTR prediction with a variational embedding learning framework., in TheWebConf, 2022. X. Xu, C. Yang, Q. Yu, Z. Fang, J. Wang, C. Fan, Y. He, C. Peng, Z. Lin, and J. Shao. paper
  12. PNMTA: A pretrained network modulation and task adaptation approach for user cold-start recommendation., in TheWebConf, 2022. H. Pang, F. Giunchiglia, X. Li, R. Guan, and X. Feng. paper

Others

  1. Low data drug discovery with one-shot learning, ACS Central Science, 2017. H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. paper
  2. SMASH: One-shot model architecture search through hypernetworks, in ICLR, 2018. A. Brock, T. Lim, J. Ritchie, and N. Weston. paper
  3. SPARC: Self-paced network representation for few-shot rare category characterization, in KDD, 2018. D. Zhou, J. He, H. Yang, and W. Fan. paper
  4. MetaPred: Meta-learning for clinical risk prediction with limited patient electronic health records, in KDD, 2019. X. S. Zhang, F. Tang, H. H. Dodge, J. Zhou, and F. Wang. paper code
  5. AffnityNet: Semi-supervised few-shot learning for disease type prediction, in AAAI, 2019. T. Ma, and A. Zhang. paper
  6. Learning from multiple cities: A meta-learning approach for spatial-temporal prediction, in TheWebConf, 2019. H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li. paper code
  7. Federated meta-learning for fraudulent credit card detection, in IJCAI, 2020. W. Zheng, L. Yan, C. Gou, and F. Wang. paper
  8. Differentially private meta-learning, in ICLR, 2020. J. Li, M. Khodak, S. Caldas, and A. Talwalkar. paper
  9. Towards fast adaptation of neural architectures with meta learning, in ICLR, 2020. D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao. paper
  10. Using optimal embeddings to learn new intents with few examples: An application in the insurance domain, in KDD, 2020:. S. Acharya, and G. Fung. paper
  11. Meta-learning for query conceptualization at web scale, in KDD, 2020. F. X. Han, D. Niu, H. Chen, W. Guo, S. Yan, and B. Long. paper
  12. Few-sample and adversarial representation learning for continual stream mining, in TheWebConf, 2020. Z. Wang, Y. Wang, Y. Lin, E. Delord, and L. Khan. paper
  13. Few-shot graph learning for molecular property prediction, in TheWebConf, 2021. Z. Guo, C. Zhang, W. Yu, J. Herr, O. Wiest, M. Jiang, and N. V. Chawla. paper code
  14. Taxonomy-aware learning for few-shot event detection, in TheWebConf, 2021. J. Zheng, F. Cai, W. Chen, W. Lei, and H. Chen. paper
  15. Learning from graph propagation via ordinal distillation for one-shot automated essay scoring, in TheWebConf, 2021. Z. Jiang, M. Liu, Y. Yin, H. Yu, Z. Cheng, and Q. Gu. paper
  16. Few-shot network anomaly detection via cross-network meta-learning, in TheWebConf, 2021. K. Ding, Q. Zhou, H. Tong, and H. Liu. paper
  17. Few-shot knowledge validation using rules, in TheWebConf, 2021. M. Loster, D. Mottin, P. Papotti, J. Ehmüller, B. Feldmann, and F. Naumann. paper
  18. Graph learning regularization and transfer learning for few-shot event detection, in SIGIR, 2021. V. D. Lai, M. V. Nguyen, T. H. Nguyen, and F. Dernoncourt. paper code
  19. Progressive network grafting for few-shot knowledge distillation, in AAAI, 2021. C. Shen, X. Wang, Y. Yin, J. Song, S. Luo, and M. Song. paper code
  20. Curriculum meta-learning for next POI recommendation, in KDD, 2021. Y. Chen, X. Wang, M. Fan, J. Huang, S. Yang, and W. Zhu. paper code
  21. MFNP: A meta-optimized model for few-shot next POI recommendation, in IJCAI, 2021. H. Sun, J. Xu, K. Zheng, P. Zhao, P. Chao, and X. Zhou. paper
  22. Physics-aware spatiotemporal modules with auxiliary tasks for meta-learning, in IJCAI, 2021. S. Seo, C. Meng, S. Rambhatla, and Y. Liu. paper
  23. Property-aware relation networks for few-shot molecular property prediction, in NeurIPS, 2021. Y. Wang, A. Abuduweili, Q. Yao, and D. Dou. paper code
  24. Few-shot data-driven algorithms for low rank approximation, in NeurIPS, 2021. P. Indyk, T. Wagner, and D. Woodruff. paper
  25. Non-Gaussian Gaussian processes for few-shot regression, in NeurIPS, 2021. M. Sendera, J. Tabor, A. Nowak, A. Bedychaj, M. Patacchiola, T. Trzcinski, P. Spurek, and M. Zieba. paper
  26. HELP: Hardware-adaptive efficient latency prediction for NAS via meta-learning, in NeurIPS, 2021. H. Lee, S. Lee, S. Chong, and S. J. Hwang. paper
  27. Learning to learn dense Gaussian processes for few-shot learning, in NeurIPS, 2021. Z. Wang, Z. Miao, X. Zhen, and Q. Qiu. paper
  28. A meta-learning based stress category detection framework on social media., in TheWebConf, 2022. X. Wang, L. Cao, H. Zhang, L. Feng, Y. Ding, and N. Li. paper

Theories

  1. Learning to learn around a common mean, in NeurIPS, 2018. G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. paper
  2. Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm, in ICLR, 2018. C. Finn and S. Levine. paper
  3. A theoretical analysis of the number of shots in few-shot learning, in ICLR, 2020. T. Cao, M. T. Law, and S. Fidler. paper
  4. Rapid learning or feature reuse? Towards understanding the effectiveness of MAML, in ICLR, 2020. A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. paper
  5. Robust meta-learning for mixed linear regression with small batches, in NeurIPS, 2020. W. Kong, R. Somani, S. Kakade, and S. Oh. paper
  6. One-shot distributed ridge regression in high dimensions, in ICML, 2020. Y. Sheng, and E. Dobriban. paper
  7. Bridging the gap between practice and PAC-Bayes theory in few-shot meta-learning, in NeurIPS, 2021. N. Ding, X. Chen, T. Levinboim, S. Goodman, and R. Soricut. paper
  8. Generalization bounds for meta-learning: An information-theoretic analysis, in NeurIPS, 2021. Q. CHEN, C. Shui, and M. Marchand. paper
  9. Generalization bounds for meta-learning via PAC-Bayes and uniform stability, in NeurIPS, 2021. A. Farid, and A. Majumdar. paper
  10. Unraveling model-agnostic meta-learning via the adaptation learning rate, in ICLR, 2022. Y. Zou, F. Liu, and Q. Li. paper
  11. On the importance of firth bias reduction in few-shot classification, in ICLR, 2022. S. Ghaffari, E. Saleh, D. Forsyth, and Y. Wang. paper code
  12. Global convergence of MAML and theory-inspired neural architecture search for few-shot learning, in CVPR, 2022. H. Wang, Y. Wang, R. Sun, and B. Li. paper

Few-shot Learning and Zero-shot Learning

  1. Label-embedding for attribute-based classification, in CVPR, 2013. Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. paper
  2. A unified semantic embedding: Relating taxonomies and attributes, in NeurIPS, 2014. S. J. Hwang and L. Sigal. paper
  3. Multi-attention network for one shot learning, in CVPR, 2017. P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, and H. T. Shen. paper
  4. Few-shot and zero-shot multi-label learning for structured label spaces, in EMNLP, 2018. A. Rios and R. Kavuluru. paper
  5. Learning compositional representations for few-shot recognition, in ICCV, 2019. P. Tokmakov, Y.-X. Wang, and M. Hebert. paper code
  6. Large-scale few-shot learning: Knowledge transfer with class hierarchy, in CVPR, 2019. A. Li, T. Luo, Z. Lu, T. Xiang, and L. Wang. paper
  7. Generalized zero- and few-shot learning via aligned variational autoencoders, in CVPR, 2019. E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata. paper code
  8. F-VAEGAN-D2: A feature generating framework for any-shot learning, in CVPR, 2019. Y. Xian, S. Sharma, B. Schiele, and Z. Akata. paper
  9. TGG: Transferable graph generation for zero-shot and few-shot learning, in ACM MM, 2019. C. Zhang, X. Lyu, and Z. Tang. paper
  10. Adaptive cross-modal few-shot learning, in NeurIPS, 2019. C. Xing, N. Rostamzadeh, B. N. Oreshkin, and P. O. Pinheiro. paper
  11. Learning meta model for zero- and few-shot face anti-spoofing, in AAAI, 2020. Y. Qin, C. Zhao, X. Zhu, Z. Wang, Z. Yu, T. Fu, F. Zhou, J. Shi, and Z. Lei. paper
  12. RD-GAN: Few/Zero-shot chinese character style transfer via radical decomposition and rendering, in ECCV, 2020. Y. Huang, M. He, L. Jin, and Y. Wang. paper
  13. An empirical study on large-scale multi-label text classification including few and zero-shot labels, in EMNLP, 2020. I. Chalkidis, M. Fergadiotis, S. Kotitsas, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. paper
  14. Multi-label few/zero-shot learning with knowledge aggregated from multiple label graphs, in EMNLP, 2020. J. Lu, L. Du, M. Liu, and J. Dipnall. paper
  15. Emergent complexity and zero-shot transfer via unsupervised environment design, in NeurIPS, 2020. M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. paper
  16. Learning graphs for knowledge transfer with limited labels, in CVPR, 2021. P. Ghosh, N. Saini, L. S. Davis, and A. Shrivastava. paper
  17. Improving zero and few-shot abstractive summarization with intermediate fine-tuning and data augmentation, in NAACL-HLT, 2021. A. R. Fabbri, S. Han, H. Li, H. Li, M. Ghazvininejad, S. R. Joty, D. R. Radev, and Y. Mehdad. paper
  18. Label verbalization and entailment for effective zero and few-shot relation extraction, in EMNLP, 2021. O. Sainz, O. L. d. Lacalle, G. Labaka, A. Barrena, and E. Agirre. paper code
  19. An empirical investigation of word alignment supervision for zero-shot multilingual neural machine translation, in EMNLP, 2021. A. Raganato, R. Vázquez, M. Creutz, and J. Tiedemann. paper
  20. Bridge to target domain by prototypical contrastive learning and label confusion: Re-explore zero-shot learning for slot filling, in EMNLP, 2021. L. Wang, X. Li, J. Liu, K. He, Y. Yan, and W. Xu. paper code
  21. A label-aware BERT attention network for zero-shot multi-intent detection in spoken language understanding, in EMNLP, 2021. T. Wu, R. Su, and B. Juang. paper
  22. Zero-shot dialogue disentanglement by self-supervised entangled response selection, in EMNLP, 2021. T. Chi, and A. I. Rudnicky. paper code
  23. Robust retrieval augmented generation for zero-shot slot filling, in EMNLP, 2021. M. R. Glass, G. Rossiello, M. F. M. Chowdhury, and A. Gliozzo. paper code
  24. Everything is all it takes: A multipronged strategy for zero-shot cross-lingual information extraction, in EMNLP, 2021. M. Yarmohammadi, S. Wu, M. Marone, H. Xu, S. Ebner, G. Qin, Y. Chen, J. Guo, C. Harman, K. Murray, A. S. White, M. Dredze, and B. V. Durme. paper code
  25. An empirical study on multiple information sources for zero-shot fine-grained entity typing, in EMNLP, 2021. Y. Chen, H. Jiang, L. Liu, S. Shi, C. Fan, M. Yang, and R. Xu. paper
  26. Zero-shot dialogue state tracking via cross-task transfer, in EMNLP, 2021. Z. Lin, B. Liu, A. Madotto, S. Moon, Z. Zhou, P. Crook, Z. Wang, Z. Yu, E. Cho, R. Subba, and P. Fung. paper code
  27. Finetuned language models are zero-shot learners, in ICLR, 2022. J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le. paper code
  28. Zero-shot stance detection via contrastive learning., in TheWebConf, 2022. B. Liang, Z. Chen, L. Gui, Y. He, M. Yang, and R. Xu. paper code
  29. Reframing instructional prompts to GPTk’s language, in Findings of ACL, 2022. D. Khashabi, C. Baral, Y. Choi, and H. Hajishirzi. paper
  30. JointCL: A joint contrastive learning framework for zero-shot stance detection, in ACL, 2022. B. Liang, Q. Zhu, X. Li, M. Yang, L. Gui, Y. He, and R. Xu. paper code
  31. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification, in ACL, 2022. S. Hu, N. Ding, H. Wang, Z. Liu, J. Wang, J. Li, W. Wu, and M. Sun. paper code
  32. Uni-Perceiver: Pre-training unified architecture for generic perception for zero-shot and few-shot tasks, in CVPR, 2022. X. Zhu, J. Zhu, H. Li, X. Wu, H. Li, X. Wang, and J. Dai. paper

Variants of Few-shot Learning

  1. Continuous adaptation via meta-learning in nonstationary and competitive environments, in ICLR, 2018. M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. paper
  2. Deep online learning via meta-learning: Continual adaptation for model-based RL, in ICLR, 2018. A. Nagabandi, C. Finn, and S. Levine. paper
  3. Incremental few-shot learning with attention attractor networks, in NeurIPS, 2019. M. Ren, R. Liao, E. Fetaya, and R. S. Zemel. paper code
  4. Bidirectional one-shot unsupervised domain mapping, in ICCV, 2019. T. Cohen, and L. Wolf. paper
  5. XtarNet: Learning to extract task-adaptive representation for incremental few-shot learning, in ICML, 2020. S. W. Yoon, D. Kim, J. Seo, and J. Moon. paper code
  6. Few-shot class-incremental learning, in CVPR, 2020. X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong. paper
  7. Wandering within a world: Online contextualized few-shot learning, in ICLR, 2021. M. Ren, M. L. Iuzzolino, M. C. Mozer, and R. Zemel. paper
  8. Repurposing pretrained models for robust out-of-domain few-shot learning, in ICLR, 2021. N. Kwon, H. Na, G. Huang, and S. Lacoste-Julien. paper code
  9. Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation, in CVPR, 2021. X. Yue, Z. Zheng, S. Zhang, Y. Gao, T. Darrell, K. Keutzer, and A. S. Vincentelli. paper
  10. Self-promoted prototype refinement for few-shot class-incremental learning, in CVPR, 2021. K. Zhu, Y. Cao, W. Zhai, J. Cheng, and Z. Zha. paper
  11. Semantic-aware knowledge distillation for few-shot class-incremental learning, in CVPR, 2021. A. Cheraghian, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and M. Harandi. paper
  12. Few-shot incremental learning with continually evolved classifiers, in CVPR, 2021. C. Zhang, N. Song, G. Lin, Y. Zheng, P. Pan, and Y. Xu. paper
  13. Learning a universal template for few-shot dataset generalization, in ICML, 2021. E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin. paper
  14. GP-Tree: A gaussian process classifier for few-shot incremental learning, in ICML, 2021. I. Achituve, A. Navon, Y. Yemini, G. Chechik, and E. Fetaya. paper code
  15. Addressing catastrophic forgetting in few-shot problems, in ICML, 2021. P. Yap, H. Ritter, and D. Barber. paper code
  16. Few-shot conformal prediction with auxiliary tasks, in ICML, 2021. A. Fisch, T. Schuster, T. Jaakkola, and R. Barzilay. paper code
  17. Few-shot lifelong learning, in AAAI, 2021. P. Mazumder, P. Singh, and P. Rai. paper
  18. Few-shot class-incremental learning via relation knowledge distillation, in AAAI, 2021. S. Dong, X. Hong, X. Tao, X. Chang, X. Wei, and Y. Gong. paper
  19. Few-shot one-class classification via meta-learning, in AAAI, 2021. A. Frikha, D. Krompass, H. Koepken, and V. Tresp. paper code
  20. Practical one-shot federated learning for cross-silo setting, in IJCAI, 2021. Q. Li, B. He, and D. Song. paper code
  21. Incremental few-shot text classification with multi-round new classes: Formulation, dataset and system, in NAACL-HLT, 2021. C. Xia, W. Yin, Y. Feng, and P. S. Yu. paper
  22. Continual few-shot learning for text classification, in EMNLP, 2021. R. Pasunuru, V. Stoyanov, and M. Bansal. paper code
  23. Self-training with few-shot rationalization, in EMNLP, 2021. M. M. Bhat, A. Sordoni, and S. Mukherjee. paper
  24. Diverse distributions of self-supervised tasks for meta-learning in NLP, in EMNLP, 2021. T. Bansal, K. P. Gunasekaran, T. Wang, T. Munkhdalai, and A. McCallum. paper
  25. Generalized and incremental few-shot learning by explicit learning and calibration without forgetting, in ICCV, 2021. A. Kukleva, H. Kuehne, and B. Schiele. paper
  26. Meta learning on a sequence of imbalanced domains with difficulty awareness, in ICCV, 2021. Z. Wang, T. Duan, L. Fang, Q. Suo, and M. Gao. paper code
  27. Synthesized feature based few-shot class-incremental learning on a mixture of subspaces, in ICCV, 2021. A. Cheraghian, S. Rahman, S. Ramasinghe, P. Fang, C. Simon, L. Petersson, and M. Harandi. paper
  28. Few-shot and continual learning with attentive independent mechanisms, in ICCV, 2021. E. Lee, C. Huang, and C. Lee. paper code
  29. Low-shot validation: Active importance sampling for estimating classifier performance on rare categories, in ICCV, 2021. F. Poms, V. Sarukkai, R. T. Mullapudi, N. S. Sohoni, W. R. Mark, D. Ramanan, and K. Fatahalian. paper
  30. Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima, in NeurIPS, 2021. G. SHI, J. CHEN, W. Zhang, L. Zhan, and X. Wu. paper
  31. Variational continual Bayesian meta-learning, in NeurIPS, 2021. Q. Zhang, J. Fang, Z. Meng, S. Liang, and E. Yilmaz. paper
  32. LFPT5: A unified framework for lifelong few-shot language learning based on prompt tuning of T5, in ICLR, 2022. C. Qin, and S. Joty. paper code
  33. Subspace regularizers for few-shot class incremental learning, in ICLR, 2022. A. F. Akyürek, E. Akyürek, D. Wijaya, and J. Andreas. paper code
  34. Meta discovery: Learning to discover novel classes given very limited data, in ICLR, 2022. H. Chi, F. Liu, W. Yang, L. Lan, T. Liu, B. Han, G. Niu, M. Zhou, and M. Sugiyama. paper
  35. Topological transduction for hybrid few-shot learning., in TheWebConf, 2022. J. Chen, and A. Zhang. paper
  36. Continual few-shot relation learning via embedding space regularization and data augmentation, in ACL, 2022. C. Qin, and S. Joty. paper code
  37. Few-shot class-incremental learning for named entity recognition, in ACL, 2022. R. Wang, T. Yu, H. Zhao, S. Kim, S. Mitra, R. Zhang, and R. Henao. paper
  38. Task-adaptive negative envision for few-shot open-set recognition, in CVPR, 2022. S. Huang, J. Ma, G. Han, and S. Chang. paper code
  39. Forward compatible few-shot class-incremental learning, in CVPR, 2022. D. Zhou, F. Wang, H. Ye, L. Ma, S. Pu, and D. Zhan. paper code
  40. Sylph: A hypernetwork framework for incremental few-shot object detection, in CVPR, 2022. L. Yin, J. M. Perez-Rua, and K. J. Liang. paper
  41. Constrained few-shot class-incremental learning, in CVPR, 2022. M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi. paper
  42. iFS-RCNN: An incremental few-shot instance segmenter, in CVPR, 2022. K. Nguyen, and S. Todorovic. paper
  43. MetaFSCIL: A meta-learning approach for few-shot class incremental learning, in CVPR, 2022. Z. Chi, L. Gu, H. Liu, Y. Wang, Y. Yu, and J. Tang. paper
  44. Few-shot incremental learning for label-to-image translation, in CVPR, 2022. P. Chen, Y. Zhang, Z. Li, and L. Sun. paper
  45. Revisiting learnable affines for batch norm in few-shot transfer learning, in CVPR, 2022. M. Yazdanpanah, A. A. Rahman, M. Chaudhary, C. Desrosiers, M. Havaei, E. Belilovsky, and S. E. Kahou. paper
  46. Few-shot learning with noisy labels, in CVPR, 2022. K. J. Liang, S. B. Rangrej, V. Petrovic, and T. Hassner. paper
  47. Improving adversarially robust few-shot image classification with generalizable representations, in CVPR, 2022. J. Dong, Y. Wang, J. Lai, and X. Xie. paper

Datasets/Benchmarks

  1. FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation, in EMNLP, 2018. X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. paper code
  2. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learning, arXiv preprint, 2019. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. paper code
  3. The Omniglot challenge: A 3-year progress report, in Current Opinion in Behavioral Sciences, 2019. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper code
  4. FewRel 2.0: Towards more challenging few-shot relation classification, in EMNLP-IJCNLP, 2019. T. Gao, X. Han, H. Zhu, Z. Liu, P. Li, M. Sun, and J. Zhou. paper code
  5. META-DATASET: A dataset of datasets for learning to learn from few examples, in ICLR, 2020. E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu, R. Goroshin, C. Gelada, K. Swersky, P. Manzagol, and H. Larochelle. paper code
  6. Few-shot object detection with attention-rpn and multi-relation detector, in CVPR, 2020. Q. Fan, W. Zhuo, C.-K. Tang, Y.-W. Tai. paper code
  7. FSS-1000: A 1000-class dataset for few-shot segmentation, in CVPR, 2020. X. Li, T. Wei, Y. P. Chen, Y.-W. Tai, and C.-K. Tang. paper code
  8. Impact of base dataset design on few-shot image classification, in ECCV, 2020. O. Sbai, C. Couprie, and M. Aubry. paper code
  9. A large-scale benchmark for few-shot program induction and synthesis, in ICML, 2021. F. Alet, J. Lopez-Contreras, J. Koppel, M. Nye, A. Solar-Lezama, T. Lozano-Perez, L. Kaelbling, and J. Tenenbaum. paper code
  10. FEW-NERD: A few-shot named entity recognition dataset, in ACL-IJCNLP, 2021. N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H. Zheng, and Z. Liu. paper code
  11. CrossFit: A few-shot learning challenge for cross-task generalization in NLP, in EMNLP, 2021. Q. Ye, B. Y. Lin, and X. Ren. paper code
  12. ORBIT: A real-world few-shot dataset for teachable object recognition, in ICCV, 2021. D. Massiceti, L. Zintgraf, J. Bronskill, L. Theodorou, M. T. Harris, E. Cutrell, C. Morrison, K. Hofmann, and S. Stumpf. paper code
  13. FLEX: Unifying evaluation for few-shot NLP, in NeurIPS, 2021. J. Bragg, A. Cohan, K. Lo, and I. Beltagy. paper
  14. Two sides of meta-learning evaluation: In vs. out of distribution, in NeurIPS, 2021. A. Setlur, O. Li, and V. Smith. paper
  15. Realistic evaluation of transductive few-shot learning, in NeurIPS, 2021. O. Veilleux, M. Boudiaf, P. Piantanida, and I. B. Ayed. paper
  16. FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding, in ACL, 2022. Y. Zheng, J. Zhou, Y. Qian, M. Ding, C. Liao, L. Jian, R. Salakhutdinov, J. Tang, S. Ruder, and Z. Yang. paper code
  17. Bongard-HOI: Benchmarking few-shot visual reasoning for human-object interactions, in CVPR, 2022. H. Jiang, X. Ma, W. Nie, Z. Yu, Y. Zhu, and A. Anandkumar. paper code

Software Library

  1. PaddleFSL, a library for few-shot learning written in PaddlePaddlelink
  2. Torchmeta, a library for few-shot learning & meta-learning written in PyTorchlink
  3. learn2learn, a library for meta-learning written in PyTorchlink
  4. keras-fsl, a library for few-shot learning written in Tensorflowlink