Transformer综述—(Natural Language Processing, NLP)

  • github学习地址:https://github.com/datawhalechina/learn-nlp-with-transformers

自然语言处理(Natural Language Processing, NLP)是一种重要的人工智能(Artificial Intelligence, AI)技术。我们随处可以见到NLP技术的应用,比如网络搜索,广告,电子邮件,智能客服,机器翻译,智能新闻播报等等。最近几年,基于深度学习(Deep Learning, DL)的NLP技术在各项任务中取得了很好的效果,这些基于深度学习模型的NLP任务解决方案通常不使用传统的、特定任务的特征工程而是仅仅使用一个端到端(end-to-end)的神经网络模型就可以获得很好的效果。本教程将会基于最前沿的深度学习模型结构(transformers)来解决NLP里的几个经典任务。通过本教程的学习,我们将能够了解transformer相关原理、熟练使用transformer相关的深度学习模型来解决NLP里的实际问题以及在各类任务上取得很好的效果。

自然语言与深度学习的课程推荐:CS224n: Natural Language Processing with Deep Learning 自然语言处理的书籍推荐:Speech and Language Processing

常见的NLP任务

本教程将NLP任务划分为4个大类:1、文本分类, 2、序列标注,3、问答任务——抽取式问答和多选问答,4、生成任务——语言模型、机器翻译和摘要生成。

  • 文本分类:对单个、两个或者多段文本进行分类。举例:“这个教程真棒!”这段文本的情感倾向是正向的,“我在学习transformer”和“如何学习transformer”这两段文本是相似的。
  • 序列标注:对文本序列中的token、字或者词进行分类。举例:“我在国家图书馆学transformer。”这段文本中的国家图书馆是一个地点,可以被标注出来方便机器对文本的理解。
  • 问答任务——抽取式问答和多选问答:1、抽取式问答根据问题从一段给定的文本中找到答案,答案必须是给定文本的一小段文字。举例:问题“小学要读多久?”和一段文本“小学教育一般是六年制。”,则答案是“六年”。2、多选式问答,从多个选项中选出一个正确答案。举例:“以下哪个模型结构在问答中效果最好?“和4个选项”A、MLP,B、cnn,C、lstm,D、transformer“,则答案选项是D。
  • 生成任务——语言模型、机器翻译和摘要生成:根据已有的一段文字生成(generate)一个字通常叫做语言模型,根据一大段文字生成一小段总结性文字通常叫做摘要生成,将源语言比如中文句子翻译成目标语言比如英语通常叫做机器翻译。

虽然各种基于transformer的深度学习模型已经在多个人工构建的NLP任务中表现出色,但由于人类语言博大精深,深度学习模型依然有很长的路要走。

Transformer的兴起

2017年,Attention Is All You Need论文首次提出了Transformer模型结构并在机器翻译任务上取得了The State of the Art(SOTA, 最好)的效果。2018年,BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding使用Transformer模型结构进行大规模语言模型(language model)预训练(Pre-train),再在多个NLP下游(downstream)任务中进行微调(Finetune),一举刷新了各大NLP任务的榜单最高分,轰动一时。2019年-2021年,研究人员将Transformer这种模型结构和预训练+微调这种训练方式相结合,提出了一系列Transformer模型结构、训练方式的改进(比如transformer-xl,XLnet,Roberta等等)。如下图所示,各类Transformer的改进不断涌现。

图:各类Transformer改进,来源:A Survey of Transformers

另外,由于Transformer优异的模型结构,使得其参数量可以非常庞大从而容纳更多的信息,因此Transformer模型的能力随着预训练不断提升,随着近几年计算能力的提升,越来越大的预训练模型以及效果越来越好的Transformers不断涌现,简单的统计可以从下图看出:

图:预训练模型参数不断变大,来源Huggingface

尽管各类Transformer的研究非常多,总体上经典和流行的Transformer模型都可以通过HuggingFace/Transformers, 48.9k Star获得和免费使用,为初学者、研究人员提供了巨大的帮助。

本教程也将基于HuggingFace/Transformers, 48.9k Star进行具体的编程和任务解决方案实现。

NLP中的预训练+微调的训练方式推荐阅读: 2021年如何科学的“微调”预训练模型? 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

BERT-Pre-training of Deep Bidirectional Transformers for Language Understanding

Transformer模型是目前机器翻译等NLP问题最好的解决办法,比RNN有大幅提高。Bidirectional Encoder Representations from Transformers (BERT) 是预训练Transformer最常用的方法,可以大幅提升Transformer的表现。

bert主要使用两个任务做训练:

1、预测被遮挡的单词

2、判断两句话是否相邻

任务一:

·𝐞: one-hot vector of the masked word “cat”.
• 𝐩: output probability distribution at the masked position.
• Loss = CrossEntropy(𝐞, 𝐩) .
• Performing one gradient descent to update the model parameters.

Task 2: Predict the Next Sentence

Given the sentence:
“calculus is a branch of math”.
• Is this the next sentence?
“it was developed by newton and leibniz”

Input:两句话之间有sep符号分开,cls表示分类任务
[CLS] “calculus is a branch of math”
[SEP] “it was developed by newton and leibniz”
• [CLS] is a token for classification.
• [SEP] is for separating sentences.

Input:
[CLS] “calculus is a branch of math”
[SEP] “it was developed by newton and leibniz”
• Target: true

Combining the two methods:

• Input:
“[CLS] calculus is a [MASK] of math
[SEP] it [MASK] developed by newton and leibniz”.
• Targets: true, “branch”, “was”.

bert同时使用两种任务结合:


Loss 1 is for binary classification (i.e., predicting the next
sentence.)
• Loss 2 and Loss 3 are for multi-class classification (i.e., predicting
the masked words.)
• Objective function is the sum of the three loss functions.
• Update model parameters by performing one gradient descent

数据集:

BERT的bidirectional如何体现的?

论文研究团队有理由相信,深度双向模型比left-to-right 模型或left-to-right and right-to-left模型的浅层连接更强大。从中可以看出BERT的双向叫深度双向,不同于以往的双向理解,以往的双向是从左到右和从右到左结合,这种虽然看着是双向的,但是两个方向的loss计算相互独立,所以其实还是单向的,只不过简单融合了一下,而bert的双向是要同时看上下文语境的,所有不同。

为了训练一个深度双向表示(deep bidirectional representation),研究团队采用了一种简单的方法,即随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token,(我理解这种情况下,模型如果想预测出这个masked的词,就必须结合上下文来预测,所以就达到了双向目的,有点类似于我们小学时候做的完形填空题目,你要填写对这个词,就必须结合上下文,BERT就是这个思路训练机器的,看来利用小学生的教学方式,有助于训练机器)。论文将这个过程称为“Masked Language Model”(MLM)。

Masked双向语言模型这么做:随机选择语料中15%的单词,把它抠掉,也就是用[Mask]掩码代替原始单词,然后要求模型去正确预测被抠掉的单词。但是这里有个问题:训练过程大量看到[mask]标记,但是真正后面用的时候是不会有这个标记的,这会引导模型认为输出是针对[mask]这个标记的,但是实际使用又见不到这个标记,这自然会有问题。为了避免这个问题,Bert改造了一下,15%的被上天选中要执行[mask]替身这项光荣任务的单词中,只有80%真正被替换成[mask]标记,10%被狸猫换太子随机替换成另外一个单词,10%情况这个单词还待在原地不做改动。这就是Masked双向语音模型的具体做法。

例如在这个句子“my dog is hairy”中,它选择的token是“hairy”。然后,执行以下过程:

数据生成器将执行以下操作,而不是始终用[MASK]替换所选单词:

80%的时间:用[MASK]标记替换单词,例如,my dog is hairy → my dog is [MASK]
10%的时间:用一个随机的单词替换该单词,例如,my dog is hairy → my dog is apple
10%的时间:保持单词不变,例如,my dog is hairy → my dog is hairy. 这样做的目的是将表示偏向于实际观察到的单词。


Transformer encoder不知道它将被要求预测哪些单词或哪些单词已被随机单词替换,因此它被迫保持每个输入token的分布式上下文表示。此外,因为随机替换只发生在所有token的1.5%(即15%的10%),这似乎不会损害模型的语言理解能力。

使用MLM的第二个缺点是每个batch只预测了15%的token,这表明模型可能需要更多的预训练步骤才能收敛。团队证明MLM的收敛速度略慢于 left-to-right的模型(预测每个token),但MLM模型在实验上获得的提升远远超过增加的训练成本。

Transformer–Attention Is All You Need

transformerr特点:

·是一个encoder-decoder模型

·非RNN模型

·完全基于全连接和注意力

·性能远超RNN(大数据集)

回忆seq-seq模型:

如何求c:

如何从RNN到transformer:自注意力层

在self-attention中,每个单词有3个不同的向量,它们分别是Query向量( Q ),Key向量( K )和Value向量( V ),长度均是64。它们是通过3个不同的权值矩阵由嵌入向量 X 乘以三个不同的权值矩阵 WQ , WK , WV 得到,其中三个矩阵的尺寸也是相同的。均是 512×64 。

总结为如下图所示的矩阵形式:

搭建transfomer:多头自注意力层

上面给出的是一个自注意力层,我们使用N个相同的层,并行,不同注意力层不共享参数。将多头的输出进行堆叠作为多头注意力层的输出。

Stacked Self-Attention Layers

一个encoder block:

最终 堆叠6个:作为transfomer encoder:

decoder部分:

encoder block:

整体网络:

BLEU—机器翻译评价方法

Bleu[1]是IBM在2002提出的,用于机器翻译任务的评价,发表在ACL,引用次数10000+,原文题目是“BLEU: a Method for Automatic Evaluation of Machine Translation”。

它的总体思想就是准确率,假如给定标准译文reference,神经网络生成的句子是candidate,句子长度为n,candidate中有m个单词出现在reference,m/n就是bleu的1-gram的计算公式。

BLEU还有许多变种。根据n-gram可以划分成多种评价指标,常见的指标有BLEU-1、BLEU-2、BLEU-3、BLEU-4四种,其中n-gram指的是连续的单词个数为n。

BLEU-1衡量的是单词级别的准确性,更高阶的bleu可以衡量句子的流畅性。

计算公式:

分子释义

神经网络生成的句子是candidate,给定的标准译文是reference。

1) 第一个求和符号统计的是所有的candidate,因为计算时可能有多个句子,

2)第二个求和符号统计的是一条candidate中所有的n−gram,而 [公式] 表示某一个n−gram在reference中的个数。

所以整个分子就是在给定的candidate中有多少个n-gram词语出现在reference中。

分母释义

前两个求和符号和分子中的含义一样,Count(n-gram’)表示n−gram′在candidate中的个数,综上可知,分母是获得所有的candidate中n-gram的个数。

改进版的BLEU计算方法

改进思路:对于某个词组出现的次数,在保证不大于candidate中出现的个数的情况下,然后再reference寻找词组出现的最多次。

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为n的子序列的精度为pn​。它是预测序列与标签序列匹配词数为n的子序列的数量与预测序列中词数为n的子序列的数量之比。举个例子,假设标签序列为A、B、C、D、E、F,预测序列为ABB、C、D,那么p1=4/5,p2=3/4,p3=1/3,p4=0。设

lenlabel​和lenpred分别为标签序列和预测序列的词数,那么,BLEU的定义为

$$
\exp \left(\min \left(0,1-\frac{l e n_{\text {label }}}{l e n_{\text {pred }}}\right)\right) \prod_{n=1}^{k} p_{n}^{1 / 2^{n}}
$$
其中 \(k\) 是我们希望匹配的子序列的最大词数。可以看到当预测 序列和标签序列完全一致时,BLEU为 1 。
因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长 子序列的精度赋予了更大权重。例如,当 \( p_{n} \) 固定在 \( 0.5 \) 时,随在 \( n \) 的增大, \( 0.5^{1 / 2} \approx 0.7,0.5^{1 / 4} \approx 0.84,0.5^{1 / 8} \approx$ $0.92,0.5^{1 / 16} \approx 0.96 \) 。另外,模型预测较短序列往往会得到 较高 \( p_{n} \) 值。因此,上式中连乘项前面的系数是为了惩罚较短的 输出而设的。举个例子,当 \(k=2 \) 时,假设标签序列为 A 、 B 、 C 、 D 、 E 、 F ,而预测序列为 A 、 B 。虽然 \( p_{1}=p_{2}=1 \) ,但惩罚系数 \( \exp (1-6 / 2) \approx 0.14\) , 因此BLEU也接近 0.14 。

python实现:

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

接下来,定义一个辅助打印函数:

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

一些注意事项

一般给出的reference是4句话,之所以给出多个句子,是因为单个句子可能无法和生成的句子做很好地匹配。

比如”你好”,reference是”hello”,机器给出的译文是”how are you”,机器给出的词语每一个一个词匹配上这个reference,那么BLEU值是0,这显然是有问题的。所以reference越多样化,匹配成功概率越高。