mmediting 中文文档

MMEditing: 多任务图像视频编辑工具箱

这是一个图像和视频编辑的工具箱,它目前包含了常见的编辑任务,比如图像修复,图像抠图,超分辨率和生成模型。在编辑图像或者视频的时候,我们往往是需要组合使用以上任务的,因此将它们整理到一个统一的框架下,方便大家使用。

基于 PyTorch 的图像&视频编辑开源工具箱, 提供修复/抠图/超分辨率/生成等任务最先进的算法。

github: https://github.com/open-mmlab/mmediting

中文文档: https://mmediting.readthedocs.io/zh_CN/latest/

目前 MMEditing 支持下列任务:

主分支代码目前支持 PyTorch 1.5 以上的版本。

MMEditing 的优势:

1. 统一的框架:我们设计了先进的框架来统一最常见的图像修复,图像抠图,超分辨率和生成模型这几个任务。用户可以在一个框架中方便地调用不同的算法和模型。

2. 灵活的模块化设计:用户能够基于这套框架灵活地增加新的功能和算法。

3. 丰富的模型和文档:下图中展示了我们支持的算法数目,要知道其中有不少算法是首次有完整的复现哦~我们也完善了文档(文档覆盖率高达90%以上)和入门材料,方便用户上手。

4. 高效的实现:MMEditing所有的训练包括 GAN 的对抗训练都是基于高效的分布式训练框架部署的,对于一些基础的操作单元,我们也相应地进行了优化。

主要特性

  • 模块化设计MMEditing 将编辑框架分解为不同的组件,并且可以通过组合不同的模块轻松地构建自定义的编辑器模型。
  • 支持多种编辑任务MMEditing 支持修复抠图超分辨率生成等多种主流编辑任务。
  • SOTAMMEditing 提供修复/抠图/超分辨率/生成等任务最先进的算法。

需要注意的是 MMSR 已作为 MMEditing 的一部分并入本仓库。 MMEditing 缜密地设计新的框架并将其精心实现,希望能够为您带来更好的体验。

安装

MMEditing 依赖 PyTorch 和 MMCV,以下是安装的简要步骤。

步骤 1. 依照官方教程安装PyTorch

步骤 2. 使用 MIM 安装 MMCV

pip3 install openmim
mim install mmcv-full

步骤 3. 从源码安装 MMEditing

git clone https://github.com/open-mmlab/mmediting.git
cd mmediting
pip3 install -e .

模型库

支持的算法:图像修复

图像抠图

图像超分辨率

视频超分辨率

图像生成

视频插帧

请参考模型库了解详情。

Super-Resolution 超分辨率

超分辨率(简称超分),是将低分辨率图像放大到高分辨率图像,如下图,一只小狒狒经过 SR网络后,可以得到放大,变成一只“大”狒狒。

随着深度学习的兴起,早在2014年,香港中文大学多媒体实验室就提出了首个使用卷积神经网络解决超分辨率的模型——SRCNN。作为图像超分辨率工作,SRCNN 对后续计算机视觉的底层算法研究产生了重要影响。后续,各种各样的网络结构如雨后春笋般地冒了出来,比如VDSR,EDSR,SRResNet 等等; 还有追求视觉效果的 SRGAN, ESRGAN。

MMEditing把一些基本的超分算法,比如 SRCNN,EDSR,SResNet,SRGAN还有视频的 EDVR 算法都包括进去。之前 OpenMMLab 中的 MMSR 也有类似的功能,相比之下,MMEditing 使用了更好的框架设计,用上了 MMCV 和 MMDetection 在发展过程中的经验积淀。整个 MM 系列都采用了类似的框架,只要掌握了一种,就能够轻而易举地掌握其他任务的代码库。

Inpainting修复

Inpainting(图像修复)是图像编辑领域里面一项基础的任务,其主要目标是修复图像中的受损(污染)区域。如下图中,左边是原图,中间是受损区域示意图,你可以去除图像中的不想要的人物,或者是图像中杂乱的不规则的受损区域。然后经过 Inpainting 修复算法就得到最右边的图啦。

Inpainting 作为一项基础任务,现如今已经被广泛的应用到各种各样的场景,比如面部修复,背景填充以及视频编辑中。

之前传统的 Patch-Matching 算法可以通过图中已知区域的纹理来快速填补当前受损区域。随着深度学习的发展,越来越多的工作利用深度神经网络实现更好的图像修复效果。深度图像修复领域中,有许多经典的开创性的工作像 Global&Local、Partial Conv 以及 DeepFill 系列,他们作为深度图像修复的经典模型被广泛地应用到后来的研究工作当中。可是这些方法都没有官方的 PyTorch 实现,为了方便大家更好的研究和深入了解这些模型,我们在 MMEditing 中集成了这些算法的训练和测试功能。同时,我们对其中一些重要的模块进行了代码上的优化,以使其更加符合 PyTorch 的风格,甚至是更快的 GPU 计算,从而能够有更好的训练速度。

Matting抠像

抠像(Matting)问题是一个在计算机视觉研究领域有重要价值的研究课题,其在工业界也有非常重要的应用。

抠像是将前景从图片或者视频中与背景分离开来的问题,比如下图中,输入是左图,一位超级可爱的小姐姐在秀丽的风景前中,我们希望得到右边的小姐姐的抠像结果(b)。它和 segmentation分割的不同之处在于,matting 需要得到更精准的边缘(如头发)以及与背景的组合系数。

为了降低求解的难度,一种最常见的方式是引入用户输入的 trimap(如下图),来对图片进行简单的三分类。其中,图中的黑色为背景,白色为前景,灰色为未知区域。给定 trimap 后,我们只需要求解未知区域的抠图结果,这大大降低了求解的难度。

在 MMEditing 中,我们首次完整复现了 DIM(Deep Image Matting)在原论文中的性能。除此之外,MMEditing 还包含当前开源 Matting 模型中性能最好的 GCA Matting 模型,以及速度最快的 IndexNet Matting。

Generation生成模型

Generation,中文含义为“生成”。所谓生成,不同于其他图像编辑的任务,旨在创造新的图像。我们试图通过深度学习的方式,让神经网络成为创造者,产生新的信息。生成任务一般分为两种,非条件(unconditional)和条件(conditional)的生成。所谓非条件生成,主要是从潜在空间(latent space)中的噪声(noise)往图像域(image domain)进行转换,并试图近似相关边缘概率分布,产生逼真的图像;所谓条件生成,主要是从一个图像域映射到潜在空间,并进一步转换到另一个图像域。目前的MMEditing主要支持后者,即从一个图像域映射到另一个图像域,如分割的mask转换到真实图像、马转换到斑马等。后者的条件生成也更加符合目前图像编辑的主题。

而目前 MMEditing 支持的条件图像生成,又可以分为两种不同的设定。其中一种生成模型的训练数据中,包含成对的训练数据,被称为“成对图像到图像转换(paired image-to-image translation)”。这种设定一般生成任务的难度比较低,但对数据本身的要求比较高,生成效果一般比较良好。最经典的成对图像到图像转换的方法,名为 pix2pix。 它也是图像到图像转换领域开山鼻祖的文章,因此我们在这个版本中首先考虑对它进行实现,获得了与作者官方实现一致的结果。

另一种生成模型的训练数据中,仅包含非成对的训练数据,被称为“非成对图像到图像转换(unpaired image-to-image translation)”。这种设定一般对数据要求较低,很容易构建两个明确的图像域,但生成难度较大,生成效果会略微降低。提出非成对图像到图像转换问题,并首先给出解决方案(cycle-consistency)的方法,名为 CycleGAN。CycleGAN 作为最经典的非成对图像到图像转换的生成方法,我们在这个版本中同样首先考虑对它进行实现和效果对齐。

生成(Generation)任务通常比较困难,但向人们展示出了惊人的效果和广阔的研究前景。在未来 MMEditing 代码库的版本中,我们会考虑加入更多不同的生成设定,以及多种生成方法,让我们的代码库更加全面、丰富、强大。

MAE–transformer模型预训练

假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞大,但样本数仍然不及ImageNet数据集中样本数的十分之一。这可能会导致适用于ImageNet数据集的复杂模型在这个椅子数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

为了应对上述问题,一个显而易见的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资金。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。

另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。

本节我们介绍迁移学习中的一种常用技术:微调(fine tuning)。如图9.1所示,微调由以下4步构成。

  1. 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
  2. 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
  3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
  4. 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

代码实现微调:

pretrained_net = models.resnet18(pretrained=True)
pretrained_net.load_state_dict(torch.load('/home/kesci/input/resnet185352/resnet18-5c106cde.pth'))

下面打印源模型的成员变量fc。作为一个全连接层,它将ResNet最终的全局平均池化层输出变换成ImageNet数据集上1000类的输出。

print(pretrained_net.fc)

输出:Linear(in_features=512, out_features=1000, bias=True)

可见此时pretrained_net最后的输出个数等于目标数据集的类别数1000。所以我们应该将最后的fc成修改我们需要的输出类别数:

pretrained_net.fc = nn.Linear(512, 2)
print(pretrained_net.fc)

此时,pretrained_netfc层就被随机初始化了,但是其他层依然保存着预训练得到的参数。由于是在很大的ImageNet数据集上预训练的,所以参数已经足够好,因此一般只需使用较小的学习率来微调这些参数,而fc中的随机初始化参数一般需要更大的学习率从头训练。PyTorch可以方便的对模型的不同部分设置不同的学习参数,我们在下面代码中将fc的学习率设为已经预训练过的部分的10倍。

output_params = list(map(id, pretrained_net.fc.parameters()))
feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters())

lr = 0.01
optimizer = optim.SGD([{'params': feature_params},
                       {'params': pretrained_net.fc.parameters(), 'lr': lr * 10}],
                       lr=lr, weight_decay=0.001)

记录: 在MAE的微调训练中,提供了两种 微调

  1. Linear probing: 锁死transformer的参数,只训练CIFAR10的那个Linear层。
  2. Fine-tuning: 接着训练transformer的参数,同时也训练CIFAR10的那个Linear。

论文做了MAE各个部分的不同设置对比实验,这些实验能够揭示MAE更多的特性。首先是masking ratio,从下图可以看到,最优的设置是75%的masking ratio,此时linear probing和finetune效果最好,这比之前的研究要高很多,比如BEiT的masking ratio是40%。另外也可以看到linear probing和finetune的表现不一样,linear probing效果随着masking ratio的增加逐渐提高直至一个峰值后出现下降,而finetune效果在不同making ratio下差异小,masking ratio在40%~80%范围内均能表现较好。 ​

preview

torch.meshgrid()函数解析

最近看到很多论文里都有这个函数(yolov3 以及最近大火的swin transformer),记录下函数的使用:

https://pytorch.org/docs/stable/generated/torch.meshgrid.html

说明:

  torch.meshgrid()的功能是生成网格,可以用于生成坐标。

函数输入:

  输入两个数据类型相同的一维tensor

函数输出:

       输出两个tensor(tensor行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数)

注意:

  1)当两个输入tensor数据类型不同或维度不是一维时会报错。

  2)其中第一个输出张量填充第一个输入张量中的元素,各行元素相同;第二个输出张量填充第二个输入张量中的元素各列元素相同。

>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([4, 5, 6])

Observe the element-wise pairings across the grid, (1, 4),
(1, 5), ..., (3, 6). This is the same thing as the
cartesian product.
>>> grid_x, grid_y = torch.meshgrid(x, y, indexing='ij')
>>> grid_x
tensor([[1, 1, 1],
        [2, 2, 2],
        [3, 3, 3]])
>>> grid_y
tensor([[4, 5, 6],
        [4, 5, 6],
        [4, 5, 6]])
# 【1】
import torch
a = torch.tensor([1, 2, 3, 4])
print(a)
b = torch.tensor([4, 5, 6])
print(b)
x, y = torch.meshgrid(a, b)
print(x)
print(y)
 
结果显示:
tensor([1, 2, 3, 4])
tensor([4, 5, 6])
tensor([[1, 1, 1],
        [2, 2, 2],
        [3, 3, 3],
        [4, 4, 4]])
tensor([[4, 5, 6],
        [4, 5, 6],
        [4, 5, 6],
        [4, 5, 6]])
 
 
 
# 【2】
import torch
a = torch.tensor([1, 2, 3, 4, 5, 6])
print(a)
b = torch.tensor([7, 8, 9, 10])
print(b)
x, y = torch.meshgrid(a, b)
print(x)
print(y)
 
结果显示:
tensor([1, 2, 3, 4, 5, 6])
tensor([ 7,  8,  9, 10])
tensor([[1, 1, 1, 1],
        [2, 2, 2, 2],
        [3, 3, 3, 3],
        [4, 4, 4, 4],
        [5, 5, 5, 5],
        [6, 6, 6, 6]])
tensor([[ 7,  8,  9, 10],
        [ 7,  8,  9, 10],
        [ 7,  8,  9, 10],
        [ 7,  8,  9, 10],
        [ 7,  8,  9, 10],
        [ 7,  8,  9, 10]])

PyTorch中model.modules(), model.named_modules(), model.children(), model.named_children(), model.parameters(), model.named_parameters(), model.state_dict()

本文通过一个例子实验来观察并讲解PyTorch中model.modules(), model.named_modules(), model.children(), model.named_children(), model.parameters(), model.named_parameters(), model.state_dict()这些model实例方法的返回值。例子如下:

import torch 
import torch.nn as nn 

class Net(nn.Module):

    def __init__(self, num_class=10):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3),
            nn.BatchNorm2d(6),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=6, out_channels=9, kernel_size=3),
            nn.BatchNorm2d(9),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.classifier = nn.Sequential(
            nn.Linear(9*8*8, 128),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(128, num_class)
        )

    def forward(self, x):
        output = self.features(x)
        output = output.view(output.size()[0], -1)
        output = self.classifier(output)
    
        return output

model = Net()

如上代码定义了一个由两层卷积层,两层全连接层组成的网络模型。值得注意的是,这个Net由外到内有3个层次:

Net:

----features:

------------Conv2d
------------BatchNorm2d
------------ReLU
------------MaxPool2d
------------Conv2d
------------BatchNorm2d
------------ReLU
------------MaxPool2d

----classifier:

------------Linear
------------ReLU
------------Dropout
------------Linear

网络Net本身是一个nn.Module的子类,它又包含了features和classifier两个由Sequential容器组成的nn.Module子类,features和classifier各自又包含众多的网络层,它们都属于nn.Module子类,所以从外到内共有3个层次。
下面我们来看这几个实例方法的返回值都是什么。

In [7]: model.named_modules()                                                                                                       
Out[7]: <generator object Module.named_modules at 0x7f5db88f3840>

In [8]: model.modules()                                                         
Out[8]: <generator object Module.modules at 0x7f5db3f53c00>

In [9]: model.children()                                                        
Out[9]: <generator object Module.children at 0x7f5db3f53408>

In [10]: model.named_children()                                                 
Out[10]: <generator object Module.named_children at 0x7f5db80305e8>

In [11]: model.parameters()                                                     
Out[11]: <generator object Module.parameters at 0x7f5db3f534f8>

In [12]: model.named_parameters()                                               
Out[12]: <generator object Module.named_parameters at 0x7f5d42da7570>

In [13]: model.state_dict()                                                     
Out[13]: 
OrderedDict([('features.0.weight', tensor([[[[ 0.1200, -0.1627, -0.0841],
                        [-0.1369, -0.1525,  0.0541],
                        [ 0.1203,  0.0564,  0.0908]],
                      ……
          

可以看出,除了model.state_dict()返回的是一个字典,其他几个方法返回值都显示的是一个生成器,是一个可迭代变量,我们通过列表推导式用for循环将返回值取出来进一步进行观察:

In [14]: model_modules = [x for x in model.modules()]                                                                                

In [15]: model_named_modules = [x for x in model.named_modules()]        

In [16]: model_children = [x for x in model.children()]                                                                              

In [17]: model_named_children = [x for x in model.named_children()]                                                                  

In [18]: model_parameters = [x for x in model.parameters()]                                                                          

In [19]: model_named_parameters = [x for x in model.named_parameters()]
1. model.modules()

model.modules()迭代遍历模型的所有子层,所有子层即指nn.Module子类,在本文的例子中,Net(), features(), classifier(),以及nn.xxx构成的卷积,池化,ReLU, Linear, BN, Dropout等都是nn.Module子类,也就是model.modules()会迭代的遍历它们所有对象。我们看一下列表model_modules:

In [20]: model_modules                                                                                                               
Out[20]: 
[Net(
   (features): Sequential(
     (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
     (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
     (2): ReLU(inplace)
     (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
     (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
     (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
     (6): ReLU(inplace)
     (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   )
   (classifier): Sequential(
     (0): Linear(in_features=576, out_features=128, bias=True)
     (1): ReLU(inplace)
     (2): Dropout(p=0.5)
     (3): Linear(in_features=128, out_features=10, bias=True)
   )
 ), 
Sequential(
   (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
   (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (2): ReLU(inplace)
   (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
   (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (6): ReLU(inplace)
   (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 ), 
Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1)), 
BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), 
ReLU(inplace), 
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), 
Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1)), 
BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), 
ReLU(inplace), 
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), 
Sequential(
   (0): Linear(in_features=576, out_features=128, bias=True)
   (1): ReLU(inplace)
   (2): Dropout(p=0.5)
   (3): Linear(in_features=128, out_features=10, bias=True)
 ), 
Linear(in_features=576, out_features=128, bias=True), 
ReLU(inplace), 
Dropout(p=0.5), 
Linear(in_features=128, out_features=10, bias=True)]

In [21]: len(model_modules)                                                                                                          
Out[21]: 15

可以看出,model_modules列表中共有15个元素,首先是整个Net,然后遍历了Net下的features子层,进一步遍历了feature下的所有层,然后又遍历了classifier子层以及其下的所有层。所以说model.modules()能够迭代地遍历模型的所有子层。

2. model.named_modules()

顾名思义,它就是有名字的model.modules()。model.named_modules()不但返回模型的所有子层,还会返回这些层的名字:

In [28]: len(model_named_modules)                                                                                                    
Out[28]: 15

In [29]: model_named_modules                                                                                                         
Out[29]: 
[('', Net(
    (features): Sequential(
      (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
      (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace)
      (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
      (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (6): ReLU(inplace)
      (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    )
    (classifier): Sequential(
      (0): Linear(in_features=576, out_features=128, bias=True)
      (1): ReLU(inplace)
      (2): Dropout(p=0.5)
      (3): Linear(in_features=128, out_features=10, bias=True)
    )
  )), 
('features', Sequential(
    (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
    (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace)
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
    (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (6): ReLU(inplace)
    (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )), 
('features.0', Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))), 
('features.1', BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)), ('features.2', ReLU(inplace)), 
('features.3', MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)), 
('features.4', Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))), 
('features.5', BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)), ('features.6', ReLU(inplace)), 
('features.7', MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)), 
('classifier',
  Sequential(
    (0): Linear(in_features=576, out_features=128, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=128, out_features=10, bias=True)
  )), 
('classifier.0', Linear(in_features=576, out_features=128, bias=True)), 
('classifier.1', ReLU(inplace)), 
('classifier.2', Dropout(p=0.5)), 
('classifier.3', Linear(in_features=128, out_features=10, bias=True))]

可以看出,model.named_modules()也遍历了15个元素,但每个元素都有了自己的名字,从名字可以看出,除了在模型定义时有命名的features和classifier,其它层的名字都是PyTorch内部按一定规则自动命名的。返回层以及层的名字的好处是可以按名字通过迭代的方法修改特定的层,如果在模型定义的时候就给每个层起了名字,比如卷积层都是conv1,conv2…的形式,那么我们可以这样处理:

for name, layer in model.named_modules():
    if 'conv' in name:
        对layer进行处理

当然,在没有返回名字的情形中,采用isinstance()函数也可以完成上述操作:

for layer in model.modules():
    if isinstance(layer, nn.Conv2d):
        对layer进行处理
3. model.children()

如果把这个网络模型Net按层次从外到内进行划分的话,features和classifier是Net的子层,而conv2d, ReLU, BatchNorm, Maxpool2d这些有时features的子层, Linear, Dropout, ReLU等是classifier的子层,上面的model.modules()不但会遍历模型的子层,还会遍历子层的子层,以及所有子层。
而model.children()只会遍历模型的子层,这里即是features和classifier。

In [22]: len(model_children)                                                                                                         
Out[22]: 2

In [22]: model_children                                                                                                              
Out[22]: 
[Sequential(
   (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
   (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (2): ReLU(inplace)
   (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
   (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (6): ReLU(inplace)
   (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 ), 
Sequential(
   (0): Linear(in_features=576, out_features=128, bias=True)
   (1): ReLU(inplace)
   (2): Dropout(p=0.5)
   (3): Linear(in_features=128, out_features=10, bias=True)
 )]

可以看出,它只遍历了两个元素,即features和classifier。

4. model.named_children()

model.named_children()就是带名字的model.children(), 相比model.children(), model.named_children()不但迭代的遍历模型的子层,还会返回子层的名字:

In [23]: len(model_named_children)                                                                                                   
Out[23]: 2

In [24]: model_named_children                                                                                                        
Out[24]: 
[('features', Sequential(
    (0): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
    (1): BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace)
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(6, 9, kernel_size=(3, 3), stride=(1, 1))
    (5): BatchNorm2d(9, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (6): ReLU(inplace)
    (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )), 
('classifier', Sequential(
    (0): Linear(in_features=576, out_features=128, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=128, out_features=10, bias=True)
  ))]

对比上面的model.children(), 这里的model.named_children()还返回了两个子层的名称:features 和 classifier .

5. model.parameters()

迭代地返回模型的所有参数。

In [30]: len(model_parameters)                                                                                                       
Out[30]: 12

In [31]: model_parameters                                                                                                            
Out[31]: 
[Parameter containing:
 tensor([[[[ 0.1200, -0.1627, -0.0841],
           [-0.1369, -0.1525,  0.0541],
           [ 0.1203,  0.0564,  0.0908]],
           ……
          [[-0.1587,  0.0735, -0.0066],
           [ 0.0210,  0.0257, -0.0838],
           [-0.1797,  0.0675,  0.1282]]]], requires_grad=True),
 Parameter containing:
 tensor([-0.1251,  0.1673,  0.1241, -0.1876,  0.0683,  0.0346],
        requires_grad=True),
 Parameter containing:
 tensor([0.0072, 0.0272, 0.8620, 0.0633, 0.9411, 0.2971], requires_grad=True),
 Parameter containing:
 tensor([0., 0., 0., 0., 0., 0.], requires_grad=True),
 Parameter containing:
 tensor([[[[ 0.0632, -0.1078, -0.0800],
           [-0.0488,  0.0167,  0.0473],
           [-0.0743,  0.0469, -0.1214]],
           …… 
          [[-0.1067, -0.0851,  0.0498],
           [-0.0695,  0.0380, -0.0289],
           [-0.0700,  0.0969, -0.0557]]]], requires_grad=True),
 Parameter containing:
 tensor([-0.0608,  0.0154,  0.0231,  0.0886, -0.0577,  0.0658, -0.1135, -0.0221,
          0.0991], requires_grad=True),
 Parameter containing:
 tensor([0.2514, 0.1924, 0.9139, 0.8075, 0.6851, 0.4522, 0.5963, 0.8135, 0.4010],
        requires_grad=True),
 Parameter containing:
 tensor([0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True),
 Parameter containing:
 tensor([[ 0.0223,  0.0079, -0.0332,  ..., -0.0394,  0.0291,  0.0068],
         [ 0.0037, -0.0079,  0.0011,  ..., -0.0277, -0.0273,  0.0009],
         [ 0.0150, -0.0110,  0.0319,  ..., -0.0110, -0.0072, -0.0333],
         ...,
         [-0.0274, -0.0296, -0.0156,  ...,  0.0359, -0.0303, -0.0114],
         [ 0.0222,  0.0243, -0.0115,  ...,  0.0369, -0.0347,  0.0291],
         [ 0.0045,  0.0156,  0.0281,  ..., -0.0348, -0.0370, -0.0152]],
        requires_grad=True),
 Parameter containing:
 tensor([ 0.0072, -0.0399, -0.0138,  0.0062, -0.0099, -0.0006, -0.0142, -0.0337,
          ……
         -0.0370, -0.0121, -0.0348, -0.0200, -0.0285,  0.0367,  0.0050, -0.0166],
        requires_grad=True),
 Parameter containing:
 tensor([[-0.0130,  0.0301,  0.0721,  ..., -0.0634,  0.0325, -0.0830],
         [-0.0086, -0.0374, -0.0281,  ..., -0.0543,  0.0105,  0.0822],
         [-0.0305,  0.0047, -0.0090,  ...,  0.0370, -0.0187,  0.0824],
         ...,
         [ 0.0529, -0.0236,  0.0219,  ...,  0.0250,  0.0620, -0.0446],
         [ 0.0077, -0.0576,  0.0600,  ..., -0.0412, -0.0290,  0.0103],
         [ 0.0375, -0.0147,  0.0622,  ...,  0.0350,  0.0179,  0.0667]],
        requires_grad=True),
 Parameter containing:
 tensor([-0.0709, -0.0675, -0.0492,  0.0694,  0.0390, -0.0861, -0.0427, -0.0638,
         -0.0123,  0.0845], requires_grad=True)]

6. model.named_parameters()

如果你是从前面看过来的,就会知道,这里就是迭代的返回带有名字的参数,会给每个参数加上带有 .weight或 .bias的名字以区分权重和偏置:

In [32]: len(model.named_parameters)                                                                                                 
Out[32]: 12

In [33]: model_named_parameters                                                                                                      
Out[33]: 
[('features.0.weight', Parameter containing:
  tensor([[[[ 0.1200, -0.1627, -0.0841],
            [-0.1369, -0.1525,  0.0541],
            [ 0.1203,  0.0564,  0.0908]],
           ……
           [[-0.1587,  0.0735, -0.0066],
            [ 0.0210,  0.0257, -0.0838],
            [-0.1797,  0.0675,  0.1282]]]], requires_grad=True)),
 ('features.0.bias', Parameter containing:
  tensor([-0.1251,  0.1673,  0.1241, -0.1876,  0.0683,  0.0346],
         requires_grad=True)),
 ('features.1.weight', Parameter containing:
  tensor([0.0072, 0.0272, 0.8620, 0.0633, 0.9411, 0.2971], requires_grad=True)),
 ('features.1.bias', Parameter containing:
  tensor([0., 0., 0., 0., 0., 0.], requires_grad=True)),
 ('features.4.weight', Parameter containing:
  tensor([[[[ 0.0632, -0.1078, -0.0800],
            [-0.0488,  0.0167,  0.0473],
            [-0.0743,  0.0469, -0.1214]],
           ……
           [[-0.1067, -0.0851,  0.0498],
            [-0.0695,  0.0380, -0.0289],
            [-0.0700,  0.0969, -0.0557]]]], requires_grad=True)),
 ('features.4.bias', Parameter containing:
  tensor([-0.0608,  0.0154,  0.0231,  0.0886, -0.0577,  0.0658, -0.1135, -0.0221,
           0.0991], requires_grad=True)),
 ('features.5.weight', Parameter containing:
  tensor([0.2514, 0.1924, 0.9139, 0.8075, 0.6851, 0.4522, 0.5963, 0.8135, 0.4010],
         requires_grad=True)),
 ('features.5.bias', Parameter containing:
  tensor([0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)),
 ('classifier.0.weight', Parameter containing:
  tensor([[ 0.0223,  0.0079, -0.0332,  ..., -0.0394,  0.0291,  0.0068],
          ……
          [ 0.0045,  0.0156,  0.0281,  ..., -0.0348, -0.0370, -0.0152]],
         requires_grad=True)),
 ('classifier.0.bias', Parameter containing:
  tensor([ 0.0072, -0.0399, -0.0138,  0.0062, -0.0099, -0.0006, -0.0142, -0.0337,
           ……
          -0.0370, -0.0121, -0.0348, -0.0200, -0.0285,  0.0367,  0.0050, -0.0166],
         requires_grad=True)),
 ('classifier.3.weight', Parameter containing:
  tensor([[-0.0130,  0.0301,  0.0721,  ..., -0.0634,  0.0325, -0.0830],
          [-0.0086, -0.0374, -0.0281,  ..., -0.0543,  0.0105,  0.0822],
          [-0.0305,  0.0047, -0.0090,  ...,  0.0370, -0.0187,  0.0824],
          ...,
          [ 0.0529, -0.0236,  0.0219,  ...,  0.0250,  0.0620, -0.0446],
          [ 0.0077, -0.0576,  0.0600,  ..., -0.0412, -0.0290,  0.0103],
          [ 0.0375, -0.0147,  0.0622,  ...,  0.0350,  0.0179,  0.0667]],
         requires_grad=True)),
 ('classifier.3.bias', Parameter containing:
  tensor([-0.0709, -0.0675, -0.0492,  0.0694,  0.0390, -0.0861, -0.0427, -0.0638,
          -0.0123,  0.0845], requires_grad=True))]

7. model.state_dict()

model.state_dict()直接返回模型的字典,和前面几个方法不同的是这里不需要迭代,它本身就是一个字典,可以直接通过修改state_dict来修改模型各层的参数,用于参数剪枝特别方便。

IPython(jupyter)中的常用工具

ipython是一个python的交互式shell,比默认的python shell好用得多,支持变量自动补全,自动缩进,支持bash shell命令,内置了许多很有用的功能和函数。学习ipython将会让我们以一种更高的效率来使用python。同时它也是利用Python进行科学计算和交互可视化的一个最佳的平台。

IPython提供了两个主要的组件:

1.一个强大的python交互式shell
2.供Jupyter notebooks使用的一个Jupyter内核(IPython notebook)

IPython的主要功能如下:

1.运行ipython控制台
2.使用ipython作为系统shell
3.使用历史输入(history)
4.Tab补全
5.使用%run命令运行脚本
6.使用%timeit命令快速测量时间
7.使用%pdb命令快速debug
8.使用pylab进行交互计算
9.使用IPython Notebook

Tab键自动补全

在shell中输入表达式时,只要按下Tab键,当前命名空间中任何与输入的字符串相匹配的变量(对象或者函数等)就会被找出来

 内省

在变量的前面或者后面加上一个问号?,就可以将有关该对象的一些通用信息显示出来,这就叫做对象的内省

如果对象是一个函数或者实例方法,则它的docstring也会被显示出来

使用历史命令history

在IPython shell中,使用历史命令可以简单地使用上下翻页键即可,另外我们也可以使用hist命令(或者history命令)查看所有的历史输入。(正确的做法是使用%hist,在这里,%hist也是一个魔法命令)

使用%run命令运行脚本

在ipython会话环境中,所有文件都可以通过%run命令当做Python程序来运行,输入%run 路径+python文件名称即可

使用%timeit命令快速测量代码运行时间

在一个交互式会话中,我们可以使用%timeit魔法命令快速测量代码运行时间。相同的命令会在一个循环中多次执行,多次运行时长的平均值作为该命令的最终评估时长。-n 选项可以控制命令在单词循环中执行的次数,-r选项控制执行循环的次数。

使用%debug命令进行快速debug

ipython带有一个强大的调试器。无论何时控制台抛出了一个异常,我们都可以使用%debug魔法命令在异常点启动调试器。接着你就能调试模式下访问所有的本地变量和整个栈回溯。使用ud向上和向下访问栈,使用q退出调试器。在调试器中输入?可以查看所有的可用命令列表。

 在IPython中使用系统shell

我们可以在IPython中直接使用系统shell,并获取读取结果作为一个Python字符串列表。为了实现这种功能,我们需要使用感叹号!作为shell命令的前缀。比如现在在我的windows系统中,直接在IPython中ping百度

点:display 模块

官方教程 https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html

之前想要在jupyter中显示图像 、视频 or voice、html,可能不知道该怎么办,有了IP display模块,可以解决该问题。

1、audio

from IPython.display import Audio,display
sound_file = '../taobao427.mp3'
display(Audio(sound_file))

2、ipython.display.image



from IPython.display import display, Image

path = "1.jpg"

display( Image( filename = path) )

3、播放视频

from IPython.display import clear_output,  display, HTML
from PIL import Image
import matplotlib.pyplot as plt
import time
import cv2
import os

def show_video(video_path:str,small:int=2):
    if not os.path.exists(video_path):
        print("视频文件不存在")
    video = cv2.VideoCapture(video_path)
    current_time = 0
    while(True):
        try:
            clear_output(wait=True)
            ret, frame = video.read()
            if not ret:
                break
            lines, columns, _ = frame.shape
            #########do img preprocess##########
            
            # 画出一个框
            #     cv2.rectangle(img, (500, 300), (800, 400), (0, 0, 255), 5, 1, 0)
             # 上下翻转
             # img= cv2.flip(img, 0)
            
            ###################################
            
            if current_time == 0:
                current_time = time.time()
            else:
                last_time = current_time
                current_time = time.time()
                fps = 1. / (current_time - last_time)
                text = "FPS: %d" % int(fps)
                cv2.putText(frame, text , (0,100), cv2.FONT_HERSHEY_TRIPLEX, 3.65, (255, 0, 0), 2)
                
          #     img = cv2.resize(img,(1080,1080))
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = cv2.resize(frame, (int(columns / small), int(lines / small)))

            img = Image.fromarray(frame)

            display(img)
            # 控制帧率
            time.sleep(0.02)
        except KeyboardInterrupt:
            video.release()

4、htlm(视频)

# ########## display
from IPython.display import display, HTML

html_str = '''
<video controls width=\"500\" height=\"500\" src=\"{}\">animation</video>
'''.format("./dataset/vid****8726.mp4")
print(html_str)
display(HTML(html_str))

5、插入参考的网页或者论文 iframe

from IPython.display import IFrame IFrame(src='https://www.baidu.com/',width=800,height=500)

from IPython.display import HTML
HTML("""

Example Domain

This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.

More information...

""")

6、插入iframe标签

from IPython.display import HTML
HTML('')

Pytorch Image Models –timm快速使用

原文:Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide – 2022.02.02

中文教程: https://www.aiuai.cn/aifarm1967.html

Github: rwightman/pytorch-image-models

PyTorch Image Models(timm) 是一个优秀的图像分类 Python 库,其包含了大量的图像模型(Image Models)、Optimizers、Schedulers、Augmentations 等等.里面提供了许多计算机视觉的SOTA模型,可以当作是torchvision的扩充版本,并且里面的模型在准确度上也较高。

timm 提供了参考的 training 和 validation 脚本,用于复现在 ImageNet 上的训练结果;以及更多的 官方文档 和 timmdocs project.

timm的安装

关于timm的安装,我们可以选择以下两种方式进行:

  1. 通过pip安装
pip install timm
  1. 通过git与pip进行安装
git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models && pip install -e .

如何查看预训练模型种类

  1. 查看timm提供的预训练模型 截止到2022.3.27日为止,timm提供的预训练模型已经达到了592个,我们可以通过timm.list_models()方法查看timm提供的预训练模型(注:本章测试代码均是在jupyter notebook上进行)
import timm
avail_pretrained_models = timm.list_models(pretrained=True)
len(avail_pretrained_models)
  1. 查看特定模型的所有种类 每一种系列可能对应着不同方案的模型,比如Resnet系列就包括了ResNet18,50,101等模型,我们可以在timm.list_models()传入想查询的模型名称(模糊查询),比如我们想查询densenet系列的所有模型。
all_densnet_models = timm.list_models("*densenet*")
all_densnet_models

我们发现以列表的形式返回了所有densenet系列的所有模型。

['densenet121',
 'densenet121d',
 'densenet161',
 'densenet169',
 'densenet201',
 'densenet264',
 'densenet264d_iabn',
 'densenetblur121d',
 'tv_densenet121']
  1. 查看模型的具体参数 当我们想查看下模型的具体参数的时候,我们可以通过访问模型的default_cfg属性来进行查看,具体操作如下
model = timm.create_model('resnet34',num_classes=10,pretrained=True)
model.default_cfg
{'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth',
 'num_classes': 1000,
 'input_size': (3, 224, 224),
 'pool_size': (7, 7),
 'crop_pct': 0.875,
 'interpolation': 'bilinear',
 'mean': (0.485, 0.456, 0.406),
 'std': (0.229, 0.224, 0.225),
 'first_conv': 'conv1',
 'classifier': 'fc',
 'architecture': 'resnet34'}

除此之外,我们可以通过访问这个链接 查看提供的预训练模型的准确度等信息。

使用和修改预训练模型

在得到我们想要使用的预训练模型后,我们可以通过timm.create_model()的方法来进行模型的创建,我们可以通过传入参数pretrained=True,来使用预训练模型。同样的,我们也可以使用跟torchvision里面的模型一样的方法查看模型的参数,类型/

import timm
import torch

model = timm.create_model('resnet34',pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape
torch.Size([1, 1000])
  • 查看某一层模型参数(以第一层卷积为例)
model = timm.create_model('resnet34',pretrained=True)
list(dict(model.named_children())['conv1'].parameters())
[Parameter containing:
 tensor([[[[-2.9398e-02, -3.6421e-02, -2.8832e-02,  ..., -1.8349e-02,
            -6.9210e-03,  1.2127e-02],
           [-3.6199e-02, -6.0810e-02, -5.3891e-02,  ..., -4.2744e-02,
            -7.3169e-03, -1.1834e-02],
            ...
           [ 8.4563e-03, -1.7099e-02, -1.2176e-03,  ...,  7.0081e-02,
             2.9756e-02, -4.1400e-03]]]], requires_grad=True)]
            
  • 修改模型(将1000类改为10类输出)
model = timm.create_model('resnet34',num_classes=10,pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape
torch.Size([1, 10])
  • 改变输入通道数(比如我们传入的图片是单通道的,但是模型需要的是三通道图片) 我们可以通过添加in_chans=1来改变
model = timm.create_model('resnet34',num_classes=10,pretrained=True,in_chans=1)
x = torch.randn(1,1,224,224)
output = model(x)

模型的保存

timm库所创建的模型是torch.model的子类,我们可以直接使用torch库中内置的模型参数保存和加载的方法,具体操作如下方代码所示

torch.save(model.state_dict(),'./checkpoint/timm_model.pth')
model.load_state_dict(torch.load('./checkpoint/timm_model.pth'))

使用示例

# replace
# optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# with
optimizer = timm.optim.AdamP(model.parameters(), lr=0.01)

for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)

        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        
        
#
optimizer = timm.optim.Adahessian(model.parameters(), lr=0.01)

is_second_order = (
    hasattr(optimizer, "is_second_order") and optimizer.is_second_order
)  # True

for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)

        loss.backward(create_graph=second_order)
        optimizer.step()
        optimizer.zero_grad()

神经网络和相关算法的简单 PyTorch 实现

github地址:

https://github.com/labmlai/annotated_deep_learning_paper_implementations

这是神经网络和相关算法的简单 PyTorch 实现的集合。这些实现与解释一起记录,

该网站 将这些呈现为并排格式化的注释。我们相信这些将帮助您更好地理解这些算法。

截屏

我们几乎每周都在积极维护这个 repo 并添加新的实现。 更新。

模块:

✨ Transformers

✨ Recurrent Highway Networks

✨ LSTM

✨ HyperNetworks – HyperLSTM

✨ ResNet

✨ ConvMixer

✨ Capsule Networks

✨ Generative Adversarial Networks

✨ Diffusion models

✨ Sketch RNN

✨ Graph Neural Networks

✨ Counterfactual Regret Minimization (CFR)

Solving games with incomplete information such as poker with CFR.

✨ Reinforcement Learning

✨ Optimizers

✨ Normalization Layers

✨ Distillation

✨ Adaptive Computation

✨ Uncertainty

Installation

pip install labml-nn

强化学习:

代码学习网站:

教程:https://stable-baselines.readthedocs.io/en/master/guide/examples.html

gym使用

在做rl时候 ,如何利用gym将动画动起来,让每一步训练过程可视化:

例程:

import gym

from stable_baselines import DQN
from stable_baselines.common.evaluation import evaluate_policy


# Create environment
env = gym.make('LunarLander-v2')

# Instantiate the agent
model = DQN('MlpPolicy', env, learning_rate=1e-3, prioritized_replay=True, verbose=1)
# Train the agent
model.learn(total_timesteps=int(2e5))
# Save the agent
model.save("dqn_lunar")
del model  # delete trained model to demonstrate loading

# Load the trained agent
model = DQN.load("dqn_lunar")

# Evaluate the agent
mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10)

# Enjoy trained agent
obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()
https://cdn-images-1.medium.com/max/960/1*h4WTQNVIsvMXJTCpXm_TAw.gif
from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines.common.vec_env import VecFrameStack
from stable_baselines import ACER

# There already exists an environment generator
# that will make and wrap atari environments correctly.
# Here we are also multiprocessing training (num_env=4 => 4 processes)
env = make_atari_env('PongNoFrameskip-v4', num_env=4, seed=0)
# Frame-stacking with 4 frames
env = VecFrameStack(env, n_stack=4)

model = ACER('CnnPolicy', env, verbose=1)
model.learn(total_timesteps=25000)

obs = env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()
https://cdn-images-1.medium.com/max/960/1*UHYJE7lF8IDZS_U5SsAFUQ.gif

bug解决:

在执行时:

import gym
env = gym.make('ALE/Pong-v5')
env.reset()

for i in range(1000):
    env.step(env.action_space.sample())
    env.render()
env.close()

输出,无法对fream进行渲染。

ImportError: cannot import name ‘rendering’ from ‘gym.envs.classic_control’.

解决办法:

打开 包gym.envs.classic_control,发现没有 rendering .py文件,去github,发现,main分支确实已经没有这个文件了,应该是版本的问题,最新版本已经去掉了该文件,然而其他分支是有的,所以将该文件下载并放在包对应位置。

此外,还需要 在代码中加入

from gym.envs.classic_control import rendering

导入rendering.py

PyTorch 断点训练,模型的保存和加载

pytorch中与保存和加载模型有关函数有三个:
1.torch.save:将序列化的对象保存到磁盘。此函数使用Python的pickle实用程序进行序列化。使用此功能可以保存各种对象的模型,张量和字典。
2. torch.load:使用pickle的unpickle工具将pickle的对象文件反序列化到内存中。即加载save保存的东西。
3. torch.nn.Module.load_state_dict:使用反序列化的state_dict加载模型的参数字典。注意,这意味着它的传入的参数应该是一个state_dict类型,也就torch.load加载出来的。

模型搭建:

# Define model  
class TheModelClass(nn.Module):  
    def __init__(self):  
        super(TheModelClass, self).__init__()  
        self.conv1 = nn.Conv2d(3, 6, 5)  
        self.pool = nn.MaxPool2d(2, 2)  
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  
        self.fc2 = nn.Linear(120, 84)  
        self.fc3 = nn.Linear(84, 10)  
  
    def forward(self, x):  
        x = self.pool(F.relu(self.conv1(x)))  
        x = self.pool(F.relu(self.conv2(x)))  
        x = x.view(-1, 16 * 5 * 5)  
        x = F.relu(self.fc1(x))  
        x = F.relu(self.fc2(x))  
        x = self.fc3(x)  
        return x  
  
# Initialize model  
model = TheModelClass()  
  
# Initialize optimizer  
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)  
  
# Print model's state_dict  
print("Model's state_dict:")  
for param_tensor in model.state_dict():  
    print(param_tensor, "\t", model.state_dict()[param_tensor].size())  
  
# Print optimizer's state_dict  
print("Optimizer's state_dict:")  
for var_name in optimizer.state_dict():  
    print(var_name, "\t", optimizer.state_dict()[var_name])  

output:

Model's state_dict:
conv1.weight     torch.Size([6, 3, 5, 5])
conv1.bias   torch.Size([6])
conv2.weight     torch.Size([16, 6, 5, 5])
conv2.bias   torch.Size([16])
fc1.weight   torch.Size([120, 400])
fc1.bias     torch.Size([120])
fc2.weight   torch.Size([84, 120])
fc2.bias     torch.Size([84])
fc3.weight   torch.Size([10, 84])
fc3.bias     torch.Size([10])

Optimizer's state_dict:
state    {}
param_groups     [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'pa

恢复训练实例

保存模型和加载模型的函数如下:

def  save_checkpoint_state(dir,epoch,model,optimizer):
	#保存模型
    checkpoint = {
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
                }   
    if not os.path.isdir(dir):
        os.mkdir(dir)

    torch.save(checkpoint, os.path.join(dir,'checkpoint-epoch%d.tar'%(epoch)))
    
def get_checkpoint_state(dir,ckp_name,device,model,optimizer):
     # 恢复上次的训练状态
    print("Resume from checkpoint...")
    checkpoint = torch.load(os.path.join(dir,ckp_name),map_location=device)
    model.load_state_dict(checkpoint['model_state_dict'])
    epoch=checkpoint['epoch']

    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    #scheduler.load_state_dict(checkpoint['scheduler_state_dict'])

    print('sucessfully recover from the last state')
    return model,epoch,optimizer

如果加入了lr_scheduler,那么lr_scheduler的state_dict也要加进来。

使用时:

# 引用包省略
#保持模型函数
def save_checkpoint_state(epoch, model, optimizer, scheduler, running_loss):
    checkpoint = {
        "epoch": epoch,
        "model_state_dict": model.state_dict(),
        "optimizer_state_dict": optimizer.state_dict(),
        "scheduler_state_dict": scheduler.state_dict()
    }
    
    torch.save(checkpoint, "checkpoint-epoch%d-loss%d.tar" % (epoch, running_loss))
# 加载模型函数   
def load_checkpoint_state(path, device, model, optimizer, scheduler):
    checkpoint = torch.load(path, map_location=device)
    
    model.load_state_dict(checkpoint["model_state_dict"])
    
    epoch = checkpoint["epoch"]
    
    optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
    
    scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
    
    return model, epoch, optimizer, scheduler  


# 是否恢复训练(如果是恢复训练,那么需要设置为true)
resume = False # True

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def train(): 
    trans = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomResizedCrop(512),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(90),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # get training dataset
    leafDiseaseCLS = CustomDataSet(images_path, is_to_ls, trans)
    
    data_loader = DataLoader(leafDiseaseCLS,
                             batch_size=16,
                             num_workers=0,
                             shuffle=True,
                             pin_memory=False)
    
    # get model
    model = EfficientNet.from_pretrained("efficientnet-b3")
    
    # extract the parameter of fully connected layer
    fc_features = model._fc.in_features
    # modify the number of classes
    model._fc = nn.Linear(fc_features, 5)
    
    model.to(device)
        
    # optimizer
    optimizer = optim.SGD(model.parameters(), 
                          lr=0.001, 
                          momentum=0.9,
                          weight_decay=5e-4)
    
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[6, 10], gamma=1/3.)
    
    # loss
    #loss_func = nn.CrossEntropyLoss()
    loss_func = FocalCosineLoss()
    
    start_epoch = -1
    
    if resume:
        model, start_epoch, optimizer,scheduler = load_checkpoint_state("../path/to/checkpoint.tar",
                                                                        device, 
                                                                        model,
                                                                        optimizer,
                                                                        scheduler)
    
    model.train()
    
    epochs = 3
    
    for epoch in range(start_epoch + 1, epochs):
        
        running_loss = 0.0
        
        print("Epoch {}/{}".format(epoch, epochs))
        
        for step, train_data in tqdm(enumerate(data_loader)):
            x_train, y_train = train_data
            
            x_train = Variable(x_train.to(device))
            y_train = Variable(y_train.to(device))
            
            # forward
            prediction = model(x_train)
            
            optimizer.zero_grad()
            
            loss = loss_func(prediction, y_train)
            
            running_loss += loss.item()
            
            # backward
            loss.backward()
            
            optimizer.step()            
            
            
        scheduler.step()
        
        # saving model
        torch.save(model.state_dict(), str(int(running_loss)) + "_" + str(epoch) + ".pth")
        
        save_checkpoint_state(epoch, model, optimizer, scheduler, running_loss)
        
        print("Loss:{}".format(running_loss))

if __name__ == "__main__":
    train()

加载部分预训练模型

大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = torch.load("model_data/yolo_weights.pth", map_location=device)

model_dict = model.state_dict()
# 将 pretrained_dict 里不属于 model_dict 的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
#pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) ==  np.shape(v)}
# 更新现有的 model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的 state_dict
model.load_state_dict(model_dict)

跨设备保存/加载模型(CPU与GPU)

模型保存在GPU上,加载到CPU

  • 保存
torch.save(model.state_dict(), PATH)
  • 加载:
device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

模型保存在GPU上,加载到GPU

保存:

torch.save(model.state_dict(), PATH)
  • 加载:
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# Make sure to call input = input.to(device) on any input tensors that you feed to the model

重点:在于epoch的恢复

保存的时候需要将 epoch也保存

代码:实现每隔N个epoch,save模型:

optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=[10,20,30,40,50],gamma=0.1)
start_epoch = 9
# print(schedule)


if RESUME:
    path_checkpoint = "./model_parameter/test/ckpt_best_50.pth"  # 断点路径
    checkpoint = torch.load(path_checkpoint)  # 加载断点

    model.load_state_dict(checkpoint['net'])  # 加载模型可学习参数

    optimizer.load_state_dict(checkpoint['optimizer'])  # 加载优化器参数
    start_epoch = checkpoint['epoch']  # 设置开始的epoch
    lr_schedule.load_state_dict(checkpoint['lr_schedule'])

for epoch in range(start_epoch+1,80):

    optimizer.zero_grad()

    optimizer.step()
    lr_schedule.step()


    if epoch %10 ==0:
        print('epoch:',epoch)
        print('learning rate:',optimizer.state_dict()['param_groups'][0]['lr'])
        checkpoint = {
            "net": model.state_dict(),
            'optimizer': optimizer.state_dict(),
            "epoch": epoch,
            'lr_schedule': lr_schedule.state_dict()
        }
        if not os.path.isdir("./model_parameter/test"):
            os.mkdir("./model_parameter/test")
        torch.save(checkpoint, './model_parameter/test/ckpt_best_%s.pth' % (str(epoch)))

设置随机数种子 ,使得训练过程结果可复现

PyTorch时,如果希望通过设置随机数种子,在gpu或cpu上固定每一次的训练结果,则需要在程序执行的开始处添加以下代码:

def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(20)
# 预处理数据以及训练模型
# ...
# ...

随机数种子seed确定时,不改变程序参数情况下,两次模型的训练结果将始终保持一致。

torch.optim.lr_scheduler 学习率的动态调整

当我们在训练神经网络时候,学习率作为一个超参数,需要我们指定,如果lr过大,会导致模型不收敛,震荡,而如果lr很小,会导致收敛慢,训练时间长。

一个最普遍的想法,初始时lr设置大一些,随着epoch的增加,lr逐渐下降。

torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法

源码:https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html

torch.optim.lr_scheduler中大部分调整学习率的方法都是根据epoch训练次数,这里介绍常见的几种方法,其他方法以后用到再补充。
要了解每个类的更新策略,可直接查看官网doc中的源码,每类都有个get_lr方法,定义了更新策略

1、torch.optim.lr_scheduler.LambdaLR

  >>> # Assuming optimizer has two groups.
        >>> lambda1 = lambda epoch: epoch // 30
        >>> lambda2 = lambda epoch: 0.95 ** epoch
        >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
        >>> for epoch in range(100):
        >>>     train(...)
        >>>     validate(...)
        >>>     scheduler.step()

class torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

  1. optimizer (Optimizer):要更改学习率的优化器;
  2. lr_lambda(function or list):根据epoch计算λ的函数;或者是一个list的这样的function,分别计算各个parameter groups的学习率更新用到的λ
  3. last_epoch (int):最后一个epoch的index,如果是训练了很多个epoch后中断了,继续训练,这个值就等于加载的模型的epoch。默认为-1表示从头开始训练,即从epoch=1开始。

更新策略:
new _ l r = λ×initial_lr
其中new_lr是得到的新的学习率,initial_lr是初始的学习率,λ是通过参数lr_lambda和epoch得到的。

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR

initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = LambdaLR(optimizer_1, lr_lambda=lambda epoch: 1/(epoch+1))

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.050000
第3个epoch的学习率:0.033333
第4个epoch的学习率:0.025000
第5个epoch的学习率:0.020000
第6个epoch的学习率:0.016667
第7个epoch的学习率:0.014286
第8个epoch的学习率:0.012500
第9个epoch的学习率:0.011111
第10个epoch的学习率:0.010000

class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

参数:

  1. optimizer (Optimizer):要更改学习率的优化器;
  2. step_size(int):每训练step_size个epoch,更新一次参数;
  3. gamma(float):更新lr的乘法因子;
  4. last_epoch (int):最后一个epoch的index,如果是训练了很多个epoch后中断了,继续训练,这个值就等于加载的模型的epoch。默认为-1表示从头开始训练,即从epoch=1开始。
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = StepLR(optimizer_1, step_size=3, gamma=0.1)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.100000
第3个epoch的学习率:0.100000
第4个epoch的学习率:0.010000
第5个epoch的学习率:0.010000
第6个epoch的学习率:0.010000
第7个epoch的学习率:0.001000
第8个epoch的学习率:0.001000
第9个epoch的学习率:0.001000
第10个epoch的学习率:0.000100

class torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

每次遇到milestones中的epoch,做一次更新:

参数:

  1. optimizer (Optimizer):要更改学习率的优化器;
  2. milestones(list):递增的list,存放要更新lr的epoch;
  3. gamma(float):更新lr的乘法因子;
  4. last_epoch (int):最后一个epoch的index,如果是训练了很多个epoch后中断了,继续训练,这个值就等于加载的模型的epoch。默认为-1表示从头开始训练,即从epoch=1开始。
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import MultiStepLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = MultiStepLR(optimizer_1, milestones=[3, 7], gamma=0.1)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.100000
第3个epoch的学习率:0.100000
第4个epoch的学习率:0.010000
第5个epoch的学习率:0.010000
第6个epoch的学习率:0.010000
第7个epoch的学习率:0.010000
第8个epoch的学习率:0.001000
第9个epoch的学习率:0.001000
第10个epoch的学习率:0.001000

上面的只是一部分,还有很多更新方法,可以在官方源码中查看