ICCV2021|极大似然法做点云降噪

论文标题:Score-Based Point Cloud Denoising

论文链接:https://arxiv.org/abs/2107.10981

作者单位:北京大学

本文提出了一种新的点云去噪范式,利用噪声点云的分布模型并利用分布的分数,表现SOTA!性能优于DMR、GPDNet等网络。

从扫描设备获取的点云通常会受到噪声的干扰,这会影响表面重建和分析等下游任务。噪声点云的分布可以看作是一组无噪声样本 p(x) 与某个噪声模型 n 卷积的分布,导致 (p∗n)(x) 的模式是底层清洁表面。为了对嘈杂的点云去噪,我们建议通过梯度上升从 p∗n 增加每个点的对数似然——迭代更新每个点的位置。由于 p∗n 在测试时是未知的,我们只需要分数(即对数概率函数的梯度)来执行梯度上升,我们提出了一种神经网络架构来估计 p∗n 的分数只给定嘈杂的点云作为输入。我们推导出用于训练网络的目标函数,并利用估计的分数开发去噪算法。实验表明,所提出的模型在各种噪声模型下优于最先进的方法,并显示出应用于其他任务(如点云上采样)的潜力。

VirtualCube: An Immersive 3D Video Communication System

3D视频会议系统VirtualCube:相隔万里也如近在咫尺般身临其境

https://www.microsoft.com/en-us/research/project/virtualcube/

微软亚洲研究院的研究项目 3D 视频会议系统 VirtualCube,可以让在线会议的与会者建立自然的眼神交互,沉浸式的体验就像在同一个房间内面对面交流一样。该技术的相关论文被全球虚拟现实学术会议 IEEE Virtual Reality 2022 接收并获得了大会的最佳论文奖(Best Paper Award – Journal Papers Track)。

在日常交谈中,相互注视和摆动头部等动作都是自然对话的组成部分,尤其是当我们在面对面交流中变换话题、控制发言或转换交流对象时,都会伴随眼神和肢体动作的交流。然而,当前的视频会议技术却存在着一定的缺陷——由于摄像头和屏幕不在同一高度,如果看向屏幕眼神往往很不自然,如果看向摄像头则无法关注到其他与会者的反应,因此视频会议缺少了线下交流的真实感和互动感。而且在实际的工作中,我们还会有各种不同的会议场景,比如多人会议、同排而坐协同工作等情况,对于捕捉与会者的侧方视线和动作来说,现有的视频会议系统就更无能为力了。

如果有一个会议系统,可以让人们即使身处不同的地方,也能像在同一房间里一样交流,视线转动就能与同伴建立起眼神沟通,这是否会给远程办公增添一份沉浸式的真实感呢?

利用现有的普通硬件设备搭建的 3D 视频系统:

为了解决这些问题,微软亚洲研究院提出了创新的 3D 视频会议系统——VirtualCube,它可以在远程视频会议中建立起真人等大的 3D 形象,无论是正面沟通,还是侧方交流,系统都能够正确捕捉到与会者的眼神、动态,建立起眼神和肢体交流。相关论文被全球虚拟现实学术会议 IEEE Virtual Reality 2022 接收并获得了大会的最佳论文奖(Best Paper Award – Journal Papers Track)

VirtualCube 系统具有三大优势:

标准化、简单化,全部使用现有的普通硬件设备。与办公场所中常见的格子间(Cubicle)类似,每个 VirtualCube 都提供了一致的物理环境和设备配置:与会者正前方安装有6个 Azure Kinect RGBD 摄像头,以捕捉真人的图像和眼神等动作;在与会者的正面和左右两侧还各有一个大尺寸的显示屏,以创造出身临其境的参会感。使用现有的、标准化的硬件能够大大简化用户设备校准的工作量,从而实现 3D 视频系统的快速部署和应用。

感。使用现有的、标准化的硬件能够大大简化用户设备校准的工作量,从而实现 3D 视频系统的快速部署和应用。

6个 Azure Kinect RGBD 摄像头捕捉人像和眼神等动作

多人、多场景,任意组合。作为在线视频会议的基础构建,VirtualCube 的虚拟会议环境可由多个空间(Cube)按照不同的布局组成,以支持不同的会议场景,例如两人的面对面会议、两人并排会议,以及多人的圆桌会议等。

多个空间(Cube)可实现任意组合

实时、高质量渲染真人图像。VirtualCube 可以捕捉到参与者的各种细微变化,包括人的皮肤颜色、纹理,面部或衣服上的反射光泽等,并实时渲染生成真人大小的 3D 形象,显示在远程与会者的屏幕中。而且虚拟会议环境的背景也可以根据用户的需求自由选择。

任意变换会议场景,都能身临其境

V-Cube View和V-Cube Assembly算法双剑合璧,沉浸式会议体验不再是难题

其实业界对 3D 视频会议的研究从未间断过。早在2000年,就有人曾提出过与类似混合现实技术有关的畅想。基于这个设想,科研人员一直在探索如何将视频会议以更逼真、更自然的方式呈现,期间也出现了不同的技术路线和解决方案,但都没有达到理想的效果。对此,微软亚洲研究院主管研究员张译中和杨蛟龙表示,过往的研究仍然有很多没有解决的问题:首先,在真实环境下,无论放置怎样的单目摄像设备,即使图像质量再高,与会者也很难形成自然的眼神交流,特别是多人会议的情况;其次,很多研究针对特定的会议场景进行优化,如两个人面对面的会议或三人的圆桌会议,很难支持不同的会议设置;第三,虽然在影视界我们能够看到一些逼真的虚拟人,但那是需要专业的技术和影视团队长时间打磨和优化才能实现的,仍然需要一定的手工劳动,目前无法进行实时捕捉和实时渲染。

为此,微软亚洲研究院提出了 V-Cube View 和 V-Cube Assembly 两大全新算法,在 VirtualCube 中实现了自动捕捉参与者的手势动作和眼神变化,实时渲染形成高保真图像,让参与者在虚拟会议中体验到真实会议的氛围。

“两个人在交谈且相互注视对方时,对方看到的自己就相当于在自己眼睛的位置放置一个摄像头。但屏幕和摄像头的位置存在高低差,所以当一方注视屏幕中对方的眼睛时,摄像头捕捉到的眼神就会偏离。因此在 VirtualCube 中,我们在与会者正前方的屏幕边缘放置了六个摄像头,通过 V-Cube View 算法合成正确的视点图像,并利用 V-Cube Assembly 确定正确的相对位置,进而给与会者一个沉浸式的会议体验”,张译中介绍道。

基于深度学习的 V-Cube View 算法,通过 VirtualCube 中的六个摄像头的 RGBD 图像作为输入,实时渲染任意目标视点下人的高保真视频。这里的技术挑战是如何同时做到高保真和实时。对此,微软亚洲研究院主管研究员杨蛟龙解释道:“实时渲染高保真的人像,特别是高保真的人脸一直是个具有挑战性的研究课题。传统的三维重建和纹理贴图的做法虽然可以做到实时绘制,却无法重现出真实人脸复杂的材质和在不同视点下外观的变化。为此我们提出了一种新的 Lumi-Net 渲染方法,其核心思想是利用重构的三维几何作为参考来实现一个四维光场的实时渲染,并结合神经网络进行图像增强,从而提高了渲染的质量,特别是人脸区域的高保真度。”

具体而言,V-Cube View 算法分为三步进行。首先,研究员设计了一个神经网络来快速求解目标视点深度图作为人体的几何参考(geometry proxy)。然后,算法在给定的几何参考下将获取的多视角 RGB 图像(即光线)进行融合,实现绘制。在这一步中,研究员受传统的非结构化流明图(Unstructured Lumigraph)方法启发,将输入光线与目标像素光线的方向和深度差异作为先验,通过神经网络学习最合适的融合权重。最后,为了进一步提升绘制质量,研究员们使用了神经网络对上一步的绘制结果进行图像增强。整个算法实现了端到端的训练,并在训练过程中引入了感知损失函数及对抗学习技术,使得算法可以自动学习出最优的神经网络,实现高保真的绘制。而且为了保证绘制的实时性,算法的前两步都在低分辨率图像上执行,这样可以在不损失太多精度的情况下大大降低所需计算量。经过精心设计和优化的 V-Cube View 算法,将实时的三维人物渲染质量提升到了一个新的高度。

V-Cube View 算法示意图

另外,为了让 VirtualCube 的使用者拥有和线下交流同样的体验,在将与会者映射到虚拟环境时,系统还要考虑他们之间的相对位置关系,这时 V-Cube Assembly 算法就发挥了重要的作用。“在整个虚拟会议环境中,V-Cube Assembly 可以被定义为全局坐标系统,单个的 VirtualCube 则为局部坐标系统。全局坐标系与局部坐标系之间的正确 3D 几何变化,对在视频显示器上正确呈现远程与会者的图像至关重要”杨蛟龙介绍。

研究员们首先会在 VirtualCube 中捕捉与会者的 3D 几何体,形成局部坐标系,然后将这些局部坐标系的 3D 几何体数据,投射到全局坐标系,经过 V-Cube Assembly 处理,在全局虚拟会议环境中确定每个 VirtualCube 参与者正确的相对位置,最后再将全局 3D 几何体转换为 VirtualCube 的局部坐标系,影射到 VirtualCube 的屏幕上。

V-Cube Assembly 算法示意图

抛砖引玉,畅想未来办公无限可能

VirtualCube 给 3D 视频会议系统提供了一种全新的思路。无论从算法设计、端到端设备部署还是工程调试上,VirtualCube 都证明了利用现有的普通硬件设备就可以实现沉浸式的 3D 视频会议体验。

除了让与会者“共享”同一个物理空间外,研究员们还在探索利用 VirtualCube 系统满足远程办公中的更多协作需求。例如,研究员们展示了这样一种场景:在协同工作时,两位与会者及其电脑桌面都将是视频会议的一部分,因此与会者并排而坐,并且跨屏幕传递自己桌面上的文档和应用程序会让远程协作更加方便。

随着技术的不断精进,未来,大家或许都可以实现身隔万里,却能亲临其境一起办公,自然沟通的遥在体验,而这将极大地提高混合办公的效率。微软亚洲研究院的研究员们也希望 VirtualCube 可以成为一颗探索的种子,给更多研究人员带来启发,在大家共同的努力下,找到更好的虚拟空间交互形式,打开未来办公的更多可能。

PointCLIP 用CLIP巧解点云分类

论文: CVPR2022 PointCLIP: Point Cloud Understanding by CLIP

代码:https://github.com/ZrrSkywalker

本文提出PointCLIP:第一个将 CLIP 应用于点云识别的工作,它将2D预训练的知识迁移到3D领域,可在没有任何 3D 训练的情况下对点云进行跨模态零样本识别。

在本文中,我们通过提出 PointCLIP 来确定这种设置是可行的,它在 CLIP 编码的点云和 3D 类别文本之间进行对齐。

因为重新训练clip的代价太大(原始clip的训练数据 有4yi对文本图像对),因此没法去修改clip的模型结构,因此也就意味之模型的输入:text-image形式。因此作者将三d点云数据经过不同视角的渲染,变成M个RGB的二维maps,送如encoder中并获得M个特征,通过与对应的文本特征做一个相似度,来确定 当前的点云类别。

模型结构

具体来说,我们通过将点云投影到多视图深度图中而不进行渲染来编码点云,并聚合视图方式的零样本预测以实现从 2D 到 3D 的知识迁移。最重要的是,我们设计了一个视图间适配器,以更好地提取全局特征,并将从 3D 中学到的小样本知识自适应地融合到 2D 中预训练的 CLIP 中。

通过在小样本设置中微调轻量级适配器,PointCLIP 的性能可以大大提高。此外,我们观察到 PointCLIP 和经典 3D 监督网络之间的互补特性。通过简单的集成,PointCLIP 提高了基线的性能,甚至超越了最先进的模型。因此,PointCLIP 是在低资源成本和数据机制下通过 CLIP 进行有效 3D 点云理解的有前途的替代方案。

ensembling聚合部分:可以认为是把pointclip作为一个即插即用的模块,用于辅助3D点云分类网络做分类任务 。

实验结果

我们对广泛采用的 ModelNet10、ModelNet40 和具有挑战性的 ScanObjectNN 进行了彻底的实验,以证明 PointCLIP 的有效性。

Mask Scoring RCNN

论文: https://arxiv.org/abs/1903.00241 CVPR2019

code: https://github.com/zjhuang22/maskscoring_rcnn

这篇论文从实例分割中mask 的分割质量角度出发,提出过去的经典分割框架存在的一个缺陷:用Bbox bounding box的classification confidence作为mask score,导致mask score和mask quality不配准。因此文章基于Mask R-CNN提出一个新的框架Mask Scoring R-CNN,能自动学习出mask quality,试图解决不配准的问题。

摘要

让一个深度网络意识到自己预测的质量是一个有趣但重要的问题。在实例分割任务中,大多数实例分割框架使用实例分类的置信度作为mask质量分数。然而,将mask质量量化为实例mask与其ground truth之间的IoU,通常与分类分数的相关性并不好。

在本文中,我们提出Mask Scoring R-CNN来学习预测实例mask的质量。提出的网络块将实例特征和相应的预测mask结合起来回归mask IoU。Mask评分策略校准mask质量和mask评分之间的偏差,并通过在COCO AP评估期间优先处理更准确的mask预测来改进实例分割性能。

通过对COCO数据集的广泛评估,Mask Scoring R-CNN与不同的模型带来一致和显着的增益,并优于Mask RCNN。

总而言之,这项工作的主要贡献突出如下:

1. 提出Mask Scoring R-CNN,这是第一个解决实例分割假设得分问题的框架。它探索了改善实例分割模型性能的新方向。通过考虑实例mask的完整性,如果实例mask的得分较高而mask不够好,则可以对实例mask的分数进行惩罚。

2. MaskIoU head非常简单有效。能够在各个backbone上涨点。

正文:

在实例分割(instance segmentation)中,比如Mask R-CNN,mask 分支的分割质量(quality)来源于检测分支的classification confidence。Mask R-CNN其实Faster R-CNN系列的延伸,其在Faster R-CNN的基础上添加一个新的分支用来预测object mask,该分支以检测分支的输出作为输入,mask的质量一定程度上依赖于检测分支。这种简单粗暴的做法取得了SOTA的性能,近年来COCO比赛的冠军或者前几名基本是Mask R-CNN及其变体,但依然有上升的空间。

更仔细的来讲,Mask R-CNN存在的问题是:bounding box的classification confidence不能代表mask的分割质量。classification confidence高可以表示检测框的置信度高(严格来讲不能表示框的定位精准),但也会存在mask分割的质量差的情况。高的分类置信度也应该同时有好的mask 结果。

回到原始的初衷,文章希望得到精准的mask质量,那么如何评价输出的mask质量呢?

是AP,或者说是instance-level的IoU。这个IoU和检测用到的IoU是一个东西,前者是predict mask和gt mask的pixel-level的Intersection-over-Union,而后者则是predict box和gt box的box-level的Intersection-over-Union。所以一个直观的方法就是用IoU来表示分割的质量,那么让网络自己学习输出分割的质量也是简单直观的做法。学习出mask的IoU,那么最后的mask score就等于maskIoU乘以classification score,mask score就同时表示分类置信度和分割的质量。

作者在Mask R-CNN的基础上添加了一个MaskIoU分支用于预测当前输出的mask和gt mask的IoU。MaskIoU的输入由两部分组成,一是ROIAlign得到的RoI feature map,二是mask分支输出的mask。两者concat之后经过3层卷积和2层全连接输出MaskIoU。

training过程:

box分支和mask保持不变,输出的mask先经过阈值为0.5的binarize,再计算binary mask和gt的IoU作为target,采用L2 loss作为损失函数,loss weight设为1,3个分支同时end-to-end训练。

inference过程:

检测分支输出score最高的100个框,再送入mask分支,得到mask结果,RoI feature map再和mask送入MaskIoU分支得到mask iou,与box的classification score相乘就得到最后的mask score。

实验结果,在COCO 2017 test集上,相对于Mask R-CNN,mask AP有1个点多的提升。

同时作者还做了对比实验,验证不同的MaskIoU输入对性能的影响。文章列举了4种输入方式:

  1. target mask和ROI feature concat
  2. target mask和ROI feature 相乘
  3. 所有mask和ROI feature concat
  4. target mask和高分辨率的ROI feature concat

其网络结构示意图如下:

验证不同training target对性能的影响:

  1. 只学习target类别的MaskIoU,忽略其他类别
  2. 学习所有类别的MaskIoU,相应的其他类别的MaskIoU的学习目标就是0
  3. 学习出现在ROI区域的类别的MaskIoU。

可以看出,setting#1的效果最好,setting#2的效果最差。

同时作者还做了实验探索Mask Scoring R-CNN的性能上界。

对每个输出的MaskIoU,用输出的mask 和匹配的gt mask iou来代替,MaskIoU分支就输出了mask分支的真实quality,这时就得到了Mask Scoring R-CNN的性能上界。实验结果表明Mask Scoring R-CNN依然比Mask R-CNN更好,说明MaskIoU起到了alignment的效果,但很显然会比用gt mask iou 代替的效果差,说明一方面box的准确性和mask分支本身也会影响mask任务的性能,另一方面MaskIoU 分支的学习能力可以进一步提升,Mask Scoring R-CNN依然有提升的空间。

速度方面,作者在Titan V GPU上测试一张图片,对于ResNet18-FPN用时0.132s,Resnet101-DCN-FPN用时0.202s,Mask Scoring R-CNN和Mask R-CNN速度一样。

总结:

作者motivation就是想让mask的分数更合理,从而基于mask rcnn添加一个新的分支预测来得到更准确的分数,做法简单粗暴,从结果来看也有涨点。其实mask的分割质量也跟box输出结果有很大关系,这种detection-based分割方法不可避免,除非把detection结果做的非常高,不然mask也要受制于box的结果。这种做法与IoU-Net类似,都是希望直接学习最本质的metric方式来提升性能。

为了同时提升detection和mask的效果,最近的Cascade方法很受欢迎,从人脸检测领域的Cascade CNN, 到Cascade R-CNN: Delving into High Quality Object Detection,再到友商的HTC不仅在COCO中拿了冠军,同时也被CVPR2019接收,Cascade方式展现了强大实力,相信在未来会出现越来越多的Cascade,如Cascade RetinaNet,Cascade TridentNet。。。

Point Transformer –ICCV2021

论文:Point Transformer
作者单位:牛津大学, 港中文(贾佳亚等), Intel Labs

transformer应用到了点云任务处理中。为点云设计了自注意力层,并使用它们来构造诸如语义场景分割,object part分割和对象分类等任务的自注意力网络。

attention层设计:

这里的y是输出的feature,ϕ、ψ、α都是逐点特征变换的一种方式(比如mlp),δ是一个位置编码函数,ρ是正则化函数,简单来说,xi是点i的feature向量,先通过特征变换将点i和点j(Xj是Xi的邻域上的点,而非全局的,目的是减少计算量)的特征得到,这里的β是关系函数,通过这个函数得到两个点特征之间的关系,也就是建立每个点特征之间的关系,然后加上位置编码函数δ,γ是映射函数,也就是映射到某一维度而用。在这基础上就可以设计这里的重点,Point transformer层了

输入是(x,p)也就是每个点的位置信息,首先通过两个线性函数编码不同主次点的特征向量(也就是得到前面的key向量),再用一个MLP得到位置函数,也就是前面的查询向量),两者结合得到relation关系,然后再用一个线性函数得到它的值向量,将relation和值向量结合,也就是前面说的对于每个点既关注它的和其他点之间的语义关系,也关注它和其他点之间的位置关系,最后输出y作为点云处理结果。

位置函数也就是计算查询向量的那个函数:

在这里插入图片描述

p就是各自点的三维坐标值,θ是一个MLP层,而前面的线性函数也就是ax+b的形式(就是linear层)

定义完了transformer层,就可以定义一个block来作为基本的block(下图a):

输入是点集合x(拥有各自的三维点坐标等点特征),输出就是将每个点x的更新后的特征输出:

down的功能是根据需要减少点集的基数,简单来说就是减少点,而up就是根据两个不同数量的点来得到结合后的结果,常常使用在U型网络设计中(也就是当前层结果是结合了当前层的输入和之前某一层不同维度的输出而得到)

transition down:

step1:farthest point sample,把p1个点采样到 p个点,通过MLP改变特征向量(y,p),通过KNN算法,把p个点分成p2类,每个类内部做最大池化得到最终输出(y,p2)。

up模块:input1 如何才能扩充点数:通过线性插值算法

网络结构:

实验结果:

用于大规模语义场景分割的具有挑战性的S3DIS数据集上,Point Transformer在Area 5上的mIoU达到70.4%,比最强的现有模型高3.3个绝对百分点,并首次超过70%mIoU阈值 。

在ModelNet40和ShapeNetPart数据集上的性能表现:

目前paper with code 网站的排名:

3D Point Cloud Classification on ModelNet40
3D Point Cloud Classification on ModelNet40
3D Part Segmentation on ShapeNet-Part
3D Semantic Segmentation on SemanticKITTI

Induction Networks for Few-Shot TextClassification

论文:https://arxiv.org/abs/1902.10482?context=cs.CL

                            IJCNLP 2019 paper

代码: https://github.com/wuzhiye7/Induction-Network-on-FewRel

在深度学习领域,监督式深度学习对大型标记数据集的贪婪需求是出了名的,然而又由于标注数据集的昂贵成本,这就限制了深度模型对新类的可泛化性。本文提出了一个用于在文本分类领域的小样本学习训练工作。

什么是小样本学习(以图片为例)

few-shot learing 的训练目标与传统的监督学习目标不同,传统的分类是学会识别训练集合里面的图片,并且泛化到测试集合,神经网络识别出该图片属于哪个类。而few shot learing是让机器自己学会学习,学习的目的不是让机器学会那个是大象那个是老虎,而是让模型学会学习不同类别的不同之处,给定两张图片,模型知道两个图片是否是同一类别。哪怕模型训练集中没有出现过该类别。

当前的小样本学习技术经常会将输入的query和support的样本集合进行sample-wise级别的对比。但是,如果跟同一个类别下的不同表达的样本去对比的时候产生的效果就不太好,除此之外,目前的技术会使用简单地求和或平均表示来计算类别,这会丢失一些信息。因此本文利用胶囊网络,通过学习sample所属于的类别的表示得到class-wise的向量,然后跟输入的query进行对比。

模型如下:

模型分为三个模块:Encoder Module, Induction Module and Relation Module.

Encoder Module

编码器使用双向LSTM,然后对每个隐藏层进行self-attention。

其中H维度为[C*K, T, 2u] ,经过矩阵变化,a的维度变为[C*K, T] ,最后e的维度为[C*K, 2u]

Induction Module

本模块的主要目的是设计一个从样本向量到类向量的非线性映射。

这是使用动态路由算法,输出的capsule数为1.

首先将样本表征进行一次变换,这里为了能够支持不同大小的C,对原Capsule Network中不同类别使用不同的W做了修改,也就是使用一个所有类别共享的W。

Relation Module

在得到类表示后,就可以计算ci与query set的相关性了。

Objective Function

使用均方误差来计算损失,匹配对的相似度为1,不匹配的相似度为0。

PointNet++

论文:https://arxiv.org/abs/1706.02413(NIPS 2017)

code: https://github.com/charlesq34/pointnet2

1、改进

PointNet因为是只使用了MLP和max pooling,没有能力捕获局部结构,因此在细节处理和泛化到复杂场景上能力很有限。

  1. point-wise MLP,仅仅是对每个点表征,对局部结构信息整合能力太弱 –> PointNet++的改进:sampling和grouping整合局部邻域
  2. global feature直接由max pooling获得,无论是对分类还是对分割任务,都会造成巨大的信息损失 –> PointNet++的改进:hierarchical feature learning framework,通过多个set abstraction逐级降采样,获得不同规模不同层次的local-global feature
  3. 分割任务的全局特征global feature是直接复制与local feature拼接,生成discriminative feature能力有限 –> PointNet++的改进:分割任务设计了encoder-decoder结构,先降采样再上采样,使用skip connection将对应层的local-global feature拼接

2、方法

PointNet++的网络大体是encoder-decoder结构

encoder为降采样过程,通过多个set abstraction结构实现多层次的降采样,得到不同规模的point-wise feature,最后一个set abstraction输出可以认为是global feature。其中set abstraction由sampling,grouping,pointnet三个模块构成。

decoder根据分类和分割应用,又有所不同。分类任务decoder比较简单,不介绍了。分割任务decoder为上采样过程,通过反向插值和skip connection实现在上采样的同时,还能够获得local+global的point-wise feature,使得最终的表征能够discriminative(分辩能力)。

思考:

  1. PointNet++降采样过程是怎么实现的?/PointNet++是如何表征global feature的?(关注set abstraction, sampling layer, grouping layer, pointnet layer)
  2. PointNet++用于分割任务的上采样过程是怎么实现的?/PointNet++是如何表征用于分割任务的point-wise feature的?(关注反向插值,skip connection)

 🐖:上图中的 d 表示坐标空间维度, C 表示特征空间维度

2.1 encoder

在PointNet的基础上增加了hierarchical (层级)feature learning framework的结构。这种多层次的结构由set abstraction层组成。

在每一个层次的set abstraction,点集都会被处理和抽象,而产生一个规模更小的点集,可以理解成是一个降采样表征过程,可参考上图左半部分。

set abstraction由三个部分构成(代码贴在下面):

def pointnet_sa_module(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope, bn=True, pooling='max', knn=False, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        # Sample and Grouping
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, knn, use_xyz)
        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
        for i, num_out_channel in enumerate(mlp):
            new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1],
                                        bn=bn, is_training=is_training,
                                        scope='conv%d'%(i), bn_decay=bn_decay,
                                        data_format=data_format) 
        if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])
        # Pooling in Local Regions
        if pooling=='max':
            new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
        elif pooling=='avg':
            new_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
        elif pooling=='weighted_avg':
            with tf.variable_scope('weighted_avg'):
                dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
                new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling=='max_and_avg':
            max_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
            avg_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
            new_points = tf.concat([avg_points, max_points], axis=-1)
        # [Optional] Further Processing 
        if mlp2 is not None:
            if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
            for i, num_out_channel in enumerate(mlp2):
                new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],
                                            padding='VALID', stride=[1,1],
                                            bn=bn, is_training=is_training,
                                            scope='conv_post_%d'%(i), bn_decay=bn_decay,
                                            data_format=data_format) 
            if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])
        new_points = tf.squeeze(new_points, [2]) # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx

2.1.1 sampling layer

使用FPS(最远点采样)对点集进行降采样,将输入点集从规模 N1 降到更小的规模 N2 。FPS可以理解成是使得采样的各个点之间尽可能远,这种采样的好处是可以降采样结果会比较均匀。

FPS实现方式如下:随机选择一个点作为初始点作为已选择采样点,计算未选择采样点集中每个点与已选择采样点集之间的距离distance,将距离最大的那个点加入已选择采样点集,然后更新distance,一直循环迭代下去,直至获得了目标数量的采样点。

class FarthestSampler:
    def __init__(self):
        pass
    def _calc_distances(self, p0, points):
        return ((p0 - points) ** 2).sum(axis=1)
    def __call__(self, pts, k):
        farthest_pts = np.zeros((k, 3), dtype=np.float32)
        farthest_pts[0] = pts[np.random.randint(len(pts))]
        distances = self._calc_distances(farthest_pts[0], pts)
        for i in range(1, k):
            farthest_pts[i] = pts[np.argmax(distances)]
            distances = np.minimum(
                distances, self._calc_distances(farthest_pts[i], pts))
        return farthest_pts

输入规模为 B∗N∗(d+C) ,其中 B 表示batch size, N 表示点集中点的数量, d 表示点的坐标维度, C 表示点的其他特征(比如法向量等)维度。一般 d=3 , c=0

输出规模为 B∗N1∗(d+C) , N1<N ,因为这是一个降采样过程。

sampling和grouping具体实现是写在一个函数里的:

def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
    '''
    Input:
        npoint: int32
        radius: float32
        nsample: int32
        xyz: (batch_size, ndataset, 3) TF tensor
        points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
        knn: bool, if True use kNN instead of radius search
        use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
    Output:
        new_xyz: (batch_size, npoint, 3) TF tensor
        new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
        idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
        grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
            (subtracted by seed point XYZ) in local regions
    '''
    new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
    if knn:
        _,idx = knn_point(nsample, xyz, new_xyz)
    else:
        idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
    grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
    grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
    if points is not None:
        grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
        if use_xyz:
            new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
        else:
            new_points = grouped_points
    else:
        new_points = grouped_xyz
    return new_xyz, new_points, idx, grouped_xyz

其中sampling对应的部分是:

new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)

xyz既是 B∗N∗3 的点云,npoint是降采样点的规模。注意:PointNet++的FPS均是在坐标空间做的,而不是在特征空间做的。这一点很关键,因为FPS本身是不可微的,无法计算梯度反向传播。

本着刨根问题的心态,我们来看看farthest_point_sample和gather_point究竟在做什么

farthest_point_sample输入输出非常明晰,输出的是降采样点在inp中的索引,因此是 B∗N1 int32类型的张量

def farthest_point_sample(npoint,inp):
    '''
input:
    int32
    batch_size * ndataset * 3   float32
returns:
    batch_size * npoint         int32
    '''
    return sampling_module.farthest_point_sample(inp, npoint)

gather_point的作用就是将上面输出的索引,转化成真正的点云

def gather_point(inp,idx):
    '''
input:
    batch_size * ndataset * 3   float32
    batch_size * npoints        int32
returns:
    batch_size * npoints * 3    float32
    '''
    return sampling_module.gather_point(inp,idx)

2.1.2 grouping layer

上一步sampling的过程是将 N∗(d+C) 降到 N1∗(d+C) (这里论述方便先不考虑batch,就考虑单个点云),实际上可以理解成是在 N 个点中选取 N1 个中心点(key point)。

那么这一步grouping的目的就是以这每个key point为中心,找其固定规模(令规模为 K)的邻点,共同组成一个局部邻域(patch)。也就是会生成 N1 个局部邻域,输出规模为 N1∗K∗(d+C)

if knn:
    _,idx = knn_point(nsample, xyz, new_xyz)
else:
    idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
    grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)

1)找邻域的过程也是在坐标空间进行(也就是以上代码输入输出维度都是 d ,没有 C  C 是在后面的代码拼接上的),而不是特征空间。

2)找邻域这里有两种方式:KNN和query ball point.

其中前者KNN就是大家耳熟能详的K近邻,找K个坐标空间最近的点。
后者query ball point就是划定某一半径,找在该半径球内的点作为邻点。

还有个问题:query ball point如何保证对于每个局部邻域,采样点的数量都是一样的呢?
事实上,如果query ball的点数量大于规模 K ,那么直接取前 K 个作为局部邻域;如果小于,那么直接对某个点重采样,凑够规模 K

KNN和query ball的区别:(摘自原文)Compared with kNN, ball query’s local neighborhood guarantees a fixed region scale thus making local region feature more generalizable across space, which is preferred for tasks requiring local pattern recognition (e.g. semantic point labeling).也就是query ball更加适合于应用在局部/细节识别的应用上,比如局部分割。

补充材料中也有实验来对比KNN和query ball:

sample_and_group代码的剩余部分:

sample和group操作都是在坐标空间进行的,因此如果还有特征空间信息(即point-wise feature),可以在这里将其与坐标空间拼接,组成新的point-wise feature,准备送入后面的unit point进行特征学习。

if points is not None:
    grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
    if use_xyz:
        new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
    else:
        new_points = grouped_points
else:
    new_points = grouped_xyz

2.1.3 PointNet layer

使用PointNet对以上结果表征

输入 B∗N∗K∗(d+C) ,输出 B∗N∗(d+C1)

以下代码主要分成3个部分:

1)point feature embedding

这里输入是 B∗N∗K∗(d+C) ,可以类比成是batch size为 B ,宽高为 N∗K ,通道数为 d+C 的图像,这样一类比,这里的卷积就好理解多了实际上就是 1∗1 卷积,不改变feature map大小,只改变通道数,将通道数升高,实现所谓“embedding”

这部分输出是 B∗N∗K∗C1

2)pooling in local regions

pooling,只是是对每个局部邻域pooling,输出是 B∗N∗1∗C1

3)further processing

再对池化后的结果做MLP,也是简单的 1∗1 卷积。这一部分在实际实验中PointNet++并没有设置去做

# Point Feature Embedding
if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
for i, num_out_channel in enumerate(mlp):
    new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],
                                padding='VALID', stride=[1,1],
                                bn=bn, is_training=is_training,
                                scope='conv%d'%(i), bn_decay=bn_decay,
                                data_format=data_format) 
if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])

# Pooling in Local Regions
if pooling=='max':
    new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
elif pooling=='avg':
    new_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
elif pooling=='weighted_avg':
    with tf.variable_scope('weighted_avg'):
        dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
        exp_dists = tf.exp(-dists * 5)
        weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
        new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
        new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
elif pooling=='max_and_avg':
    max_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
    avg_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
    new_points = tf.concat([avg_points, max_points], axis=-1)

# [Optional] Further Processing 
if mlp2 is not None:
    if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
    for i, num_out_channel in enumerate(mlp2):
        new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],
                                    padding='VALID', stride=[1,1],
                                    bn=bn, is_training=is_training,
                                    scope='conv_post_%d'%(i), bn_decay=bn_decay,
                                    data_format=data_format) 
    if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])

2.1.4 Encoder还有一个问题

pointnet++实际上就是对局部邻域表征。

那就不得不面对一个挑战:non-uniform sampling density(点云的密度不均匀),也就是在稀疏点云局部邻域训练可能不能很好挖掘点云的局部结构

PointNet++做法:learn to combine features from regions of different scales when the input sampling density changes.

因此文章提出了两个方案:

一、Multi-scale grouping(MSG)

对当前层的每个中心点,取不同radius的query ball,可以得到多个不同大小的同心球,也就是得到了多个相同中心但规模不同的局部邻域,分别对这些局部邻域表征,并将所有表征拼接。如上图所示。

该方法比较麻烦,运算较多。

代码层面其实就是加了个遍历radius_list的循环,分别处理,并最后concat

new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
new_points_list = []
for i in range(len(radius_list)):
    radius = radius_list[i]
    nsample = nsample_list[i]
    idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
    grouped_xyz = group_point(xyz, idx)
    grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1])
    if points is not None:
        grouped_points = group_point(points, idx)
        if use_xyz:
            grouped_points = tf.concat([grouped_points, grouped_xyz], axis=-1)
    else:
        grouped_points = grouped_xyz
    if use_nchw: grouped_points = tf.transpose(grouped_points, [0,3,1,2])
    for j,num_out_channel in enumerate(mlp_list[i]):
        grouped_points = tf_util.conv2d(grouped_points, num_out_channel, [1,1],
                                        padding='VALID', stride=[1,1], bn=bn, is_training=is_training,
                                        scope='conv%d_%d'%(i,j), bn_decay=bn_decay)
    if use_nchw: grouped_points = tf.transpose(grouped_points, [0,2,3,1])
    new_points = tf.reduce_max(grouped_points, axis=[2])
    new_points_list.append(new_points)
new_points_concat = tf.concat(new_points_list, axis=-1)

二、Multi-resolution grouping(MRG)

(摘自原文)features of a region at some level Li is a concatenation of two vectors.

One vector (left in figure) is obtained by summarizing the features at each subregion from the lower level Li−1 using the set abstraction level.

The other vector (right) is the feature that is obtained by directly processing all raw points in the local region using a single PointNet.

简单来说,就是当前set abstraction的局部邻域表征由两部分构成:

左边表征:对上一层set abstraction(还记得上一层的点规模是更大的吗?)各个局部邻域(或者说中心点)的特征进行聚合。 右边表征:使用一个单一的PointNet直接在局部邻域处理原始点云

2.2 decoder:

2.2.1 分类任务的decoder

比较简单,将encoder降采样得到的global feature送入几层全连接网络,最后通过一个softmax分类。

2.2.2 分割任务的decoder

经过前半部分的encoder,我们得到的是global feature,或者是极少数点的表征(其实也就是global feature)

而如果做分割,我们需要的是point-wise feature,这可怎么办呢?

PointNet处理思路很简单,直接把global feature复制并与之前的local feature拼接,使得这个新point-wise feature能够获得一定程度的“邻域”信息。这种简单粗暴的方法显然并不能得到很discriminative的表征

别急,PointNet++来了。

PointNet++设计了一种反向插值的方法来实现上采样的decoder结构,通过反向插值和skip connection来获得discriminative point-wise feature:

设红色矩形点集 P1 : N1∗C ,蓝色矩形点集 P2 : N2∗C2 ,因为decoder是上采样过程,因此 N2>N1

一、反向插值具体做法:

对于 P2 中的每个点 x ,找在原始点云坐标空间下, P1 中与其最接近的 k 个点 x1,…,xk

当前我们想通过反向插值的方式用较少的点把更多的点的特征插出来,实现上采样

此时 x1,…,xk 的特征我们是知道的,我们想得到 x 的特征。如上公式,实际上就是将 x1,…,xk 的特征加权求和,得到x的特征。其中这个权重是与x和 x1,…,xk 的距离成反向相关的,意思就是距离越远的点,对x特征的贡献程度越小。P2 中其他点以此类推,从而实现了特征的上采样回传

skip connection具体做法:

回传得到的point-wise feature是从decoder的上一层得到的,因此算是global级别的信息,这对于想得到discriminative还是不够,因为我们还缺少local级别的信息!!!

如上图就是我们反向插值只得到了 C2 ,但是我们还需要提供local级别信息的 C1 特征!!!

这时skip connection来了!!!

skip connection其实就是将之前encoder对应层的表征直接拼接了过来

因为上图中encoder蓝色矩形点集的 C1 表征是来自于规模更大的绿色矩形点集的表征,这在一定程度上其实是实现了local级别的信息

我们通过反向插值和skip connection在decoder中逐级上采样得到local + global point-wise feature,得到了discriminative feature,应用于分割任务。

2.3 loss

无论是分类还是分割应用,本质上都是分类问题,因此loss就是分类任务中常用的交叉熵loss

2.4 其他的问题

Q:PointNet++梯度是如何回传的???

A:PointNet++ fps实际上并没有参与梯度计算和反向传播。

可以理解成是PointNet++将点云进行不同规模的fps降采样,事先将这些数据准备好,再送到网络中去训练的

3 dataset and experiments

3.1 dataset

  • MNIST: Images of handwritten digits with 60k training and 10k testing samples.(用于分类)
  • ModelNet40: CAD models of 40 categories (mostly man-made). We use the official split with 9,843 shapes for training and 2,468 for testing. (用于分类)
  • SHREC15: 1200 shapes from 50 categories. Each category contains 24 shapes which are mostly organic ones with various poses such as horses, cats, etc. We use five fold cross validation to acquire classification accuracy on this dataset. (用于分类)
  • ScanNet: 1513 scanned and reconstructed indoor scenes. We follow the experiment setting in [5] and use 1201 scenes for training, 312 scenes for test. (用于分割)

3.2 experiments

主要关心的实验结果是2个:

  1. ModelNet40分类结果
  2. ShapeNet Part分割结果
PointNet++也做了ShapeNet part数据集上的part segmentation:

4、 conclusion

PointNet++是PointNet的续作,在一定程度上弥补了PointNet的一些缺陷,表征网络基本和PN类似,还是MLP、 1∗1 卷积、pooling那一套,核心创新点在于设计了局部邻域的采样表征方法和这种多层次的encoder-decoder结合的网络结构。

第一次看到PointNet++网络结构,觉得设计得非常精妙,特别是设计了上采样和下采样的具体实现方法,并以此用于分割任务的表征,觉得设计得太漂亮了。但其实无论是分类还是分割任务,提升幅度较PointNet也就是1-2个点而已。

PointNet++,特别是其前半部分encoder,提供了非常好的表征网络,后面很多点云处理应用的论文都会使用到PointNet++作为它们的表征器。

pointnet–基于点云的分类和分割深度学习算法

论文:https://arxiv.org/abs/1612.00593(cvpr2017)

code:https://github.com/charlesq34/pointnet

基础知识:

1、什么是点云?

简单来说就是一堆三维点的集合,必须包括各个点的三维坐标信息,其他信息比如各个点的法向量、颜色等均是可选。点云的文件格式可以有很多种,包括xyz,npy,ply,obj,off等(有些是mesh不过问题不大,因为mesh可以通过泊松采样等方式转化成点云)。对于单个点云,如果你使用np.loadtxt得到的实际上就是一个维度为 (num_points,num_channels) 的张量,num_channels一般为3,表示点云的三维坐标。

这里以horse.xyz文件为例,实际就是文本文件,打开后数据长这样(局部,总共有2048个点):

实际就是一堆点的信息,这里只有三维坐标,将其可视化出来长这样:

2、点云处理任务是重要的

三维图形具有多种表现形式,包括了mesh、体素、点云等,甚至还有些方法使用多视图来对三维图形表征。而点云在以上各种形式的数据中算是日常生活中最能够大规模获取和使用的数据结构了,包括自动驾驶、增强现实等在内的应用需要直接或间接从点云中提取信息,点云处理也逐渐成为计算机视觉非常重要的一部分。

正文:

PointNet所作的事情就是对点云做特征学习,并将学习到的特征去做不同的应用:分类(shape-wise feature)、分割(point-wise feature)等。

PointNet之所以影响力巨大,就是因为它为点云处理提供了一个简单、高效、强大的特征提取器(encoder),几乎可以应用到点云处理的各个应用中,其地位类似于图像领域的AlexNet。

1、动机

点云或者mesh,大多数研究人员都是将其转化成3D体素或者多视图来做特征学习的,这其中的工作包括了VoxelNet, MVCNN等。这些工作都或多或少存在了一些问题。

直接对点云做特征学习也不是不可以,但有几个问题需要考虑:特征学习需要对点云中各个点的排列保持不变性、特征学习需要对rigid transformation保持不变性等。虽然有挑战,但是深度学习强大的表征能力以及其在图像领域取得的巨大成功,因此是很有必要直接在点云上进行尝试的。

2、贡献

  1. 我们设计了一个新颖的深层网络架构来处理三维中的无序点集
  2. 我们设计的网络表征可以做三维图形分类、图形的局部分割以及场景的语义分割等任务
  3. 我们提供了完备的经验和理论分析来证明PointNet的稳定和高效。
  4. 充分的消融实验,证明网络各个部分对于表征的有效性。

3、方法

3.1 点云的几个特点:

  1. 无序性 –> 对称函数设计用于表征
  2. 点不是孤立的,需要考虑局部结构 –> 局部全局特征结合
  3. 仿射变换无关性 –> alignment network

(重要)关于第三点:相同的点云在空间中经过一定的刚性变化(旋转或平移),坐标发生变化。其实对于点云分类or分割任务来说(分割可以认为是点的分类),例如,整体的旋转和平移不应修改全局点云类别和每个点的类别,也不应修改点的分割因此需要保证仿射变换无关性(简单来说,“仿射变换”就是:“线性变换”+“平移”),但是对于位置 敏感的 任务:点云配准、点云补全任务,对于位置敏感,就不需要保证 仿射变换的无关性

我们希望不论点云在怎样的坐标系下呈现,网络都能正确的识别出。这个问题可以通过STN(spacial transform netw)来解决。三维不太一样的是点云是一个不规则的结构(无序,无网格),不需要重采样的过程。pointnet通过学习一个矩阵来达到对目标最有效的变换。

解决方法

  1. 空间变换网络解决旋转问题:三维的STN可以通过学习点云本身的位姿信息学习到一个最有利于网络进行分类或分割的DxD旋转矩阵(D代表特征维度,pointnet中D采用3和64)。至于其中的原理,我的理解是,通过控制最后的loss来对变换矩阵进行调整,pointnet并不关心最后真正做了什么变换,只要有利于最后的结果都可以。pointnet采用了两次STN,第一次input transform是对空间中点云进行调整,直观上理解是旋转出一个更有利于分类或分割的角度,比如把物体转到正面;第二次feature transform是对提取出的64维特征进行对齐,即在特征层面对点云进行变换。
  2. maxpooling解决无序性问题:网络对每个点进行了一定程度的特征提取之后,maxpooling可以对点云的整体提取出global feature。

3.2 网络结构:

batchnormal对于上采样任务来说效果不好

网络分成了分类网络和分割网络2个部分,大体思路类似,都是设计表征的过程分类网络设计global feature,分割网络设计point-wise feature。两者都是为了让表征尽可能discriminative,也就是同类的能分到一类,不同类的距离能拉开。

输入 n*3 n是点数

inputtransform:放射变换(为了保证仿射变换的不变性):直接预测一个变换矩阵(3*3)来处理输入点的坐标(对所有坐标进行变换)。因为会有数据增强的操作存在,这样做可以在一定程度上保证网络可以学习到变换无关性。T-Net模型,它的主要作用是学习出变化矩阵来对输入的点云或特征进行规范化处理。

MLP:

有两种实现方法:

1、输入 B,N,3 —- nn.liner层 — B,N,64

2、输入 B,3,N —- conv1d(1×1) — B,64,N

Pooling:

为了解决无序性(点云本质上是一长串点(nx3矩阵,其中n是点数)。在几何上,点的顺序不影响它在空间中对整体形状的表示,例如,相同的点云可以由两个完全不同的矩阵表示。)使用 maxpooling或sumpooling,也就是说,最后的D维特征对每一维都选取N个点中对应的最大特征值或特征值总和,这样就可以通过g来解决无序性问题。

最后再经过一个mlp(代码中运用全连接)得到k个score。分类网络最后接的loss是softmax。

分割网络:

将池化后的特征和前一阶段特征拼接,池化后的特征有全局信息,在和之前的拼接,以此得到同时对局部信息和全局信息感知的point-wise特征,提升表征效果。然后最后输出n*m, m为类别数量,表示每个点的类别信息。

损失函数:

分类中常用的交叉熵+alignment network中用于约束生成的alignment matrix的loss

dataset and experiments

evaluate metric

分类:分类准确率acc
分割:mIoU

dataset

分类:ModelNet40
分割:ShapeNet Part dataset和Stanford 3D semantic parsing dataset

experiments

1、分类:

2、局部分割:

code:

1. 如何对点云使用MLP?
2. alignment network怎么做的?
3. 对称函数如何实现来提取global feature的?
4. loss?

def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    with tf.variable_scope('transform_net1') as sc:
        transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
    point_cloud_transformed = tf.matmul(point_cloud, transform)
    input_image = tf.expand_dims(point_cloud_transformed, -1)
    net = tf_util.conv2d(input_image, 64, [1,3],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv2', bn_decay=bn_decay)
    with tf.variable_scope('transform_net2') as sc:
        transform = feature_transform_net(net, is_training, bn_decay, K=64)
    end_points['transform'] = transform
    net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
    net_transformed = tf.expand_dims(net_transformed, [2])
    net = tf_util.conv2d(net_transformed, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv4', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv5', bn_decay=bn_decay)
    # Symmetric function: max pooling
    net = tf_util.max_pool2d(net, [num_point,1],
                             padding='VALID', scope='maxpool')
    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
                                  scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
                                  scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')
    return net, end_points

MLP的核心做法:

input_image = tf.expand_dims(point_cloud_transformed, -1)
net = tf_util.conv2d(input_image, 64, [1,3],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
net = tf_util.conv2d(net, 64, [1,1],
                     padding='VALID', stride=[1,1],
                     bn=True, is_training=is_training,
                     scope='conv2', bn_decay=bn_decay)

这里input_image维度是 B×N×3×1 ,因此将点云看成是W和H分为N和3的2D图像,维度是 1

然后直接基于这个“2D图像”做卷积,第一个卷积核size是 [1,3] ,正好对应的就是“2D图像”的一行,也就是一个点(三维坐标),输出通道数是64,因此输出张量维度应该是 B×N×1×64

第二个卷积核size是 [1,1] , 1∗1 卷积只改变通道数,输出张量维度是 B×N×1×64

conv2d就是将卷积封装了一下,核心部分也就是调用tf.nn.conv2d,实现如下:

def conv2d(inputs,
           num_output_channels,
           kernel_size,
           scope,
           stride=[1, 1],
           padding='SAME',
           use_xavier=True,
           stddev=1e-3,
           weight_decay=0.0,
           activation_fn=tf.nn.relu,
           bn=False,
           bn_decay=None,
           is_training=None):
  """ 2D convolution with non-linear operation.
  Args:
    inputs: 4-D tensor variable BxHxWxC
    num_output_channels: int
    kernel_size: a list of 2 ints
    scope: string
    stride: a list of 2 ints
    padding: 'SAME' or 'VALID'
    use_xavier: bool, use xavier_initializer if true
    stddev: float, stddev for truncated_normal init
    weight_decay: float
    activation_fn: function
    bn: bool, whether to use batch norm
    bn_decay: float or float tensor variable in [0,1]
    is_training: bool Tensor variable
  Returns:
    Variable tensor
  """
  with tf.variable_scope(scope) as sc:
      kernel_h, kernel_w = kernel_size
      num_in_channels = inputs.get_shape()[-1].value
      kernel_shape = [kernel_h, kernel_w,
                      num_in_channels, num_output_channels]
      kernel = _variable_with_weight_decay('weights',
                                           shape=kernel_shape,
                                           use_xavier=use_xavier,
                                           stddev=stddev,
                                           wd=weight_decay)
      stride_h, stride_w = stride
      outputs = tf.nn.conv2d(inputs, kernel,
                             [1, stride_h, stride_w, 1],
                             padding=padding)
      biases = _variable_on_cpu('biases', [num_output_channels],
                                tf.constant_initializer(0.0))
      outputs = tf.nn.bias_add(outputs, biases)
      if bn:
        outputs = batch_norm_for_conv2d(outputs, is_training,
                                        bn_decay=bn_decay, scope='bn')
      if activation_fn is not None:
        outputs = activation_fn(outputs)
      return outputs

alignment network :

input_transform_net为例:

def input_transform_net(point_cloud, is_training, bn_decay=None, K=3):
    """ Input (XYZ) Transform Net, input is BxNx3 gray image
        Return:
            Transformation matrix of size 3xK """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    input_image = tf.expand_dims(point_cloud, -1)
    net = tf_util.conv2d(input_image, 64, [1,3],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='tconv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='tconv2', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='tconv3', bn_decay=bn_decay)
    net = tf_util.max_pool2d(net, [num_point,1],
                             padding='VALID', scope='tmaxpool')
    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
                                  scope='tfc1', bn_decay=bn_decay)
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
                                  scope='tfc2', bn_decay=bn_decay)
    with tf.variable_scope('transform_XYZ') as sc:
        assert(K==3)
        weights = tf.get_variable('weights', [256, 3*K],
                                  initializer=tf.constant_initializer(0.0),
                                  dtype=tf.float32)
        biases = tf.get_variable('biases', [3*K],
                                 initializer=tf.constant_initializer(0.0),
                                 dtype=tf.float32)
        biases += tf.constant([1,0,0,0,1,0,0,0,1], dtype=tf.float32)
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)
    transform = tf.reshape(transform, [batch_size, 3, K])
    return transform

实际上,前半部分就是通过卷积和max_pooling对batch内各个点云提取global feature,再将global feature降到 3×K 维度,并reshape成 3×3 ,得到transform matrix

通过数据增强丰富训练数据集,网络确实应该学习到有效的transform matrix,用来实现transformation invariance

loss

监督分类任务中常用的交叉熵loss + alignment network中的mat_diff_loss

 对于特征空间的alignment network,由于特征空间维度比较高,因此直接生成的alignment matrix会维度特别大,不好优化,因此这里需要加个loss约束一下。

总结:

PointNet之所以影响力巨大,并不仅仅是因为它是第一篇,更重要的是它的网络很简洁(简洁中蕴含了大量的工作来探寻出简洁这条路)却非常的work,这也就使得它能够成为一个工具,一个为点云表征的encoder工具,应用到更广阔的点云处理任务中。

MLP+max pooling竟然就击败了众多SOTA,令人惊讶。另外PointNet在众多细节设计也都进行了理论分析和消融实验验证,保证了严谨性,这也为PointNet后面能够大规模被应用提供了支持。

让网络来学习resize:插即用的新型图像调整器模型

Learning to Resize Images for Computer Vision Tasks

论文地址:https://arxiv.org/abs/2103.09950

代码:https://github.com/KushajveerSingh/resize_network_cv

尽管近年来卷积神经网络很大地促进了计算机视觉的发展,但一个重要方面很少被关注:图像大小对被训练的任务的准确性的影响 。通常,输入图像的大小被调整到一个相对较小的空间分辨率(例如,224×224),然后再进行训练和推理。这种调整大小的机制通常是固定的图像调整器(image resizer)(如:双行线插值)但是这些调整器是否限制了训练网络的任务性能呢? 作者通过实验证明了典型的线性调整器可以被可学习的调整器取代,从而大大提高性能 。虽然经典的调整器通常会具备更好的小图像感知质量(即对人类识别图片更加友好),本文提出的可学习调整器不一定会具备更好的视觉质量,但能够提高CV任务的性能。

在不同的任务中,可学习的图像调整器与baseline视觉模型进行联合训练。这种可学习的基于cnn的调整器创建了机器友好的视觉操作,因此在不同的视觉任务中表现出了更好的性能 。作者使用ImageNet数据集来进行分类任务,实验中使用四种不同的baseline模型来学习不同的调整器,相比于baseline模型,使用本文提出的可学习调整器能够获得更高的性能提升。

主要包括了两个重要的特性:(1) 双线性特征调整大小(bilinear feature resizing),以及(2)跳过连接(skip connection),该连接可容纳双线性调整大小的图像和CNN功能的组合。

第一个特性考虑到以原始分辨率计算的特征与模型的一致性。跳过连接可以简化学习过程,因为重定大小器模型可以直接将双线性重定大小的图像传递到基线任务中。

与一般的编码器-解码器架构不同,这篇论文中所提出的体系结构允许将图像大小调整为任何目标大小和纵横比(注意:这个大小必须是我们自己设定的,而不是网络 自己学习的)。并且可学习的resizer性能几乎不依赖于双线性重定器的选择,这意味着它可以直接替换其他现成的方法。

以上之后,就没有别的了,还以为是什么样子的惊天设计,最后不就是:给网络变得复杂了吗,把这种复杂说成是可学习的resizer,这样的话,普通网络的浅层都可以说成是可学习的resizer不是吗?

另外,通过一些实验 来说,确实能够提升效果。个人认为 作者提出的resizer模型实际上是一个可训练的数据增强方法,甚至也可以认为就是将模型变得更加复杂。整体的网络就像是一般模型中resblock。

作者的对比试验是这样做的:首先通过常用的reisze方法训练网络模型,作为baseline,然后在训练好的网络模型前面添加可学习的resizer,然后进行训练,作为自己的方法。感受一下作者的实验结果吧。如表3和表4

表3 训练配置
表4 对比试验

四. 总结

文章写得好,加上点运气,都可以发高质量论文,以上

代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

"""
    Learning to Resize Images for Computer Vision Tasks
    https://arxiv.org/pdf/2105.04714.pdf
"""

def conv1x1(in_chs, out_chs = 16):
    return nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, padding=0)


def conv3x3(in_chs, out_chs = 16):
    return nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=1, padding=1)


def conv7x7(in_chs, out_chs = 16):
    return nn.Conv2d(in_chs, out_chs, kernel_size=7, stride=1, padding=3)


class ResBlock(nn.Module):
    def __init__(self, in_chs,out_chs = 16):
        super(ResBlock, self).__init__()
        self.layers = nn.Sequential(
            conv3x3(in_chs, out_chs),
            nn.BatchNorm2d(out_chs),
            nn.LeakyReLU(0.2),
            conv3x3(out_chs, out_chs),
            nn.BatchNorm2d(out_chs)
        )
    def forward(self, x):
        identity = x
        out = self.layers(x)
        out += identity
        return out


class Resizer(nn.Module):
    def __init__(self, in_chs, out_size, n_filters = 16, n_res_blocks = 1, mode = 'bilinear'):
        super(Resizer, self).__init__()
        self.interpolate_layer = partial(F.interpolate, size=out_size, mode=mode,
            align_corners=(True if mode in ('linear', 'bilinear', 'bicubic', 'trilinear') else None))
        self.conv_layers = nn.Sequential(
            conv7x7(in_chs, n_filters),
            nn.LeakyReLU(0.2),
            conv1x1(n_filters, n_filters),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(n_filters)
        )
        self.residual_layers = nn.Sequential()
        for i in range(n_res_blocks):
            self.residual_layers.add_module(f'res{i}', ResBlock(n_filters, n_filters))
        self.residual_layers.add_module('conv3x3', conv3x3(n_filters, n_filters))
        self.residual_layers.add_module('bn', nn.BatchNorm2d(n_filters))
        self.final_conv = conv7x7(n_filters, in_chs)

    def forward(self, x):
        identity = self.interpolate_layer(x)
        conv_out = self.conv_layers(x)
        conv_out = self.interpolate_layer(conv_out)
        conv_out_identity = conv_out
        res_out = self.residual_layers(conv_out)
        res_out += conv_out_identity
        out = self.final_conv(res_out)
        out += identity
        return

Dynamic ReLU(2020)

论文地址: https://arxiv.org/pdf/2003.10027.pdf
源码地址: https://github.com/Islanna/DynamicReLU.

贡献:提出Dynamic ReLU激活函数

ReLU是深度神经网络中常用的激活函数。到目前为止,ReLU及其推广(非参数或参数)都是静态的,对所有的输入样本执行相同的操作。在本文中,我们提出了Dynamic ReLU激活函数(DY-ReLU),它的参数依赖于所有输入。其关键在于DY-ReLU将全局上下文编码为超函数,并相应地调整分段线性激活函数。与静态模型相比,DY-ReLU的额外计算开销可以忽略不计,但其表现能力显着提高,特别是对于轻量神经网络。仅仅通过简单地在MobileNetV2上使用DY-ReLU ,ImageNet分类的最高精度就可以从72.0%提高到76.2%,而计算量只增加了5%。

Dy-ReLU特点(优点):

  • 将所有输入元素 x={xc​} 的全局上下文编码在超参数 θ(x) 中(运用SE模块的注意力机制),以适应激活函数fθ(x)​(x)(可以根据输入数据x,动态的学习选择最佳的激活函数)。

ReLU是深度学习中很重要的里程碑,简单但强大,能够极大地提升神经网络的性能。目前也有很多ReLU的改进版,比如Leaky ReLU和 PReLU,而这些改进版和原版的最终参数都是固定的。所以论文自然而然地想到,如果能够根据输入特征来调整ReLU的参数可能会更好。

定义:

K认为是分段数

Relation to Prior Work

网络实现:

DY-ReLU的可能性很大,表1展示了DY-ReLU与原版ReLU以及其变种的关系。在学习到特定的参数后,DY-ReLU可等价于ReLU、LeakyReLU以及PReLU。而当K=1,偏置bc1=0时,则等价于SE模块。另外DY-ReLU也可以是一个动态且高效的Maxout算子,相当于将Maxout的K个卷积转换为K个动态的线性变化,然后同样地输出最大值。

DY-ReLU-A

空间位置和维度均共享(spatial and channel-shared),计算如图2a所示,仅需输出2K个参数,计算最简单,表达能力也最弱。

DY-ReLU-B

仅空间位置共享(spatial-shared and channel-wise),计算如图2b所示,输出2KC个参数。

问题: