论文标题:Score-Based Point Cloud Denoising
论文链接:https://arxiv.org/abs/2107.10981
作者单位:北京大学
本文提出了一种新的点云去噪范式,利用噪声点云的分布模型并利用分布的分数,表现SOTA!性能优于DMR、GPDNet等网络。
从扫描设备获取的点云通常会受到噪声的干扰,这会影响表面重建和分析等下游任务。噪声点云的分布可以看作是一组无噪声样本 p(x) 与某个噪声模型 n 卷积的分布,导致 (p∗n)(x) 的模式是底层清洁表面。为了对嘈杂的点云去噪,我们建议通过梯度上升从 p∗n 增加每个点的对数似然——迭代更新每个点的位置。由于 p∗n 在测试时是未知的,我们只需要分数(即对数概率函数的梯度)来执行梯度上升,我们提出了一种神经网络架构来估计 p∗n 的分数只给定嘈杂的点云作为输入。我们推导出用于训练网络的目标函数,并利用估计的分数开发去噪算法。实验表明,所提出的模型在各种噪声模型下优于最先进的方法,并显示出应用于其他任务(如点云上采样)的潜力。