多模态|BLIP 、CoCa and BeiTv

BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

代码: https://github.com/salesforce/BLIP

本文是 ALBEF 原班人马做的,基本可以看做吸收了 VLMo 思想的 ALBEF。训练的 loss 和技巧都与 ALBEF 一致,属于 ALBEF 的后续工作。

本文motivation主要有两个:一是之前多模态预训练模型结构要么是基于编码器,不能直接用于生成任务,要么是基于编码解码器,在检索类任务上不方便,本文设计的结构包含单模态编码器、视觉指导文本编码器、视觉指导文本解码器,可以方便地用对比学习、ITM(Image-Text Matching ( ITM ): 图文匹配任务,针对的是图文交互流,即判断当前pair是不是匹配(就是个分类任务))、LM(生成式任务)三个预训练任务训练不同的模块,也容易迁移到各种下游任务中;二是之前的很多工作通过扩充了网上搜集的图文对的预训练数据(GCC、SBU、CC12M),提高了模型效果,但忽略了其中有很多不对齐的噪声情况,本文用一个boostrapping的方法,用captioner为网络图片生成描述,用filter过滤掉不配对的数据,从而降低噪声,更高效地利用网络上的数据。

关键的改进:

1. 模型结构上整合了 ALBEF 和和 VLMo。VLMo 参数共享,但是不存在单独编码器;ALBEF 存在单独编码器但是部分参数不共享。这篇论文存在单独的 vision encoder 和 text encoder。多模态的参数是以 cross-attention 模块插入到文本编码器实现的,cross-attention 模块享受文本编码器的参数(可以看 col 2 和 col3)

2. 增加了解码器(参考 col 4),为了做生成任务。解码器拿到视觉特征和未掩码的语言特征,过一个 casual self-attention 层,做 GPT 用的那种 lm 任务。这里区别于 MLM 的那种 mask 机制,是通过 causal self-attention 来实现因果推理的,我此时还不熟悉这个过程。

3. 除了上面的主要部分,还有一个重要的部分是利用训练好的模型生成伪标签。将训练好的模型里的不同的部分拿出来在 COCO 上稍微微调一下,decoder 部分可以生成文本,算 ITM loss 的那个模块可以做 image-text pair 的过滤,通过输出打分、置信度的方式。在实验中,BLIP 的解码能力似乎很强,用这种范式生成的文本不仅人看着觉得不错,用于自训练后也可以涨点 2-3,非常显着。

   一个例子是 stable diffusion 的官方博文里提到了,他们在做微调时,会遇到数据集只有图片没有 caption 的情况,比如 pokeman 数据。他们用 BLIP 来做caption生成,然后微调 stable diffusion 发现效果很好。

   另一个例子是知名的开源多模态数据集 LAION,他们也用了 BLIP 来辅助制作数据集。他们的过程在官网公布了,可以参考。

总结:个人感觉模型部分的改进可能有用可能没有用,但是解码器输出的 caption 确实是不错。以至于很多下游任务都拿 BLIP 来生成 caption。

CoCa

Contrastive Captioners are Image-Text Foundation Models

代码: https://github.com/lucidrains/CoCa-pytorch

它也是 ALBEF 的后续工作,模型非常像。区别在于:

1. 图像用了 attentional pooling,这在本文的实验中有效

2. 去掉了 ITM loss,目的是加快训练,原本文本需要 forward 2-3 次,去掉 ITM loss 之后只需要 forward 一次就可以了。在 ALBEF 中,ITM 需要完整的 text,而 MLM 需要掩码,所以是两次输入。在 BLIP 中,ITC 一次,ITM 因为在文本模型中插入了新的模块,所以得单独做前向。而 LM 因为用了既多了新的模块又得用 causal self-attention 所以又得单独做一次。在 CoCa 中,为了完成 captioning loss 和 ITC loss,只需要做一次前向即可。GPT 中把 cls-token 放在最后面就可以得到全局表征来做 ITC loss 了。

简单快速的方法可以有效地 scale,而我们知道复杂的模型设计、loss 设计经常不如简单地放大模型、增加数据有效。参考凯明的 FLYP。

这种画图的方式很不错,很直观。可以参考,以后也画成这样。

总结:

简单有效的结构设计,我对 CoCa 的印象是简单有效。它的峰值性能我没有感觉很炸裂,可能是模型、数据 scale 之后自然的结果。但是它的 zero-shot 性能让我印象很深刻,在 imagenet 上微调不微调的差距很小,这一点非常非常关键。

读到 coca,我对多模态的疑问还有两点:

1. mixture of experts 的结构没有在本文中得到应用,但我感觉是个相当有前途的结构

2. 双向的生成 loss 还是没人做,谁说只能图像辅助文本?

BeiTv

(BEiT-3) Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks

论文的卖点是大一统。在 introduction 章节详细介绍了大一统指的是统一模型、loss 和数据。我觉得可以简单地概括为:用统一的 multi-way transformer (mixture of experts ) 架构和单个 masked modeling loss,将任意模态看做是同一个模态来建模。

具体而言,它指的是在将任意模态输入网络后,都表现为 list of tokens,直接将它们看做是相同的模态来做 masked modeling 就好了。如果想要拿过去做下游任务的话,直接将需要的那部分模型拿出来即可。比如做视觉任务就拿视觉模型,做语言任务就拿语言模型。如果是做多模态任务,可以灵活地模拟不同的需求,比如:1. 做生成任务可以拿多模态部分的参数出来 2. 做图文检索可以单独取出视觉部分和语言部分来模拟 CLIP。不仅仅是能做任意任务,还继承了前作的优点,比如 CLIP 这种弱跨模态交互带来的计算效率的优势。

总结:

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注