transformers 的 generate() 方法实现多样化文本生成:参数含义和算法原理解读

这个类对外提供的方法是 generate(),通过调参能完成以下事情:

  • greedy decoding:当 num_beams=1 而且 do_sample=False 时,调用 greedy_search()方法,每个step生成条件概率最高的词,因此生成单条文本。
  • multinomial sampling:当 num_beams=1 且 do_sample=True 时,调用 sample() 方法,对词表做一个采样,而不是选条件概率最高的词,增加多样性。
  • beam-search decoding:当 num_beams>1 且 do_sample=False 时,调用 beam_search() 方法,做一个 num_beams 的柱搜索,每次都是贪婪选择top N个柱。
  • beam-search multinomial sampling:当 num_beams>1 且 do_sample=True 时,调用 beam_sample() 方法,相当于每次不再是贪婪选择top N个柱,而是加了一些采样。
  • diverse beam-search decoding:当 num_beams>1 且 num_beam_groups>1 时,调用 group_beam_search() 方法。
  • constrained beam-search decoding:当 constraints!=None 或者 force_words_ids!=None,实现可控文本生成。

参数列表

核心代码详见:generate()入口函数定义, GenerationConfig类

1.控制生成长度的参数

参数类型缺省值含义
max_lengthint20表示 prompt + max_new_tokens 累加的最大长度,如果max_new_tokens也设置了,会覆盖这个参数
max_new_tokensint生成部分的tokens的最大长度 (忽略prompt部分的长度)
min_length0表示 prompt + min_new_tokens 累加的最小长度,如果min_new_tokens也设置了,会覆盖这个参数
min_new_tokensint生成部分的tokens的最小长度 (忽略prompt部分的长度)
early_stoppingbool, strFalse对于beam search方法的控制终止的配置。
False: 当有’num_beams’个候选生成,则终止
True: 应用一些启发式规则判断不能找到更好的生成候选,来提前终止生成
“never”: 当判断没有更好的可生成的candidate, beam search 过程终止
max_timefloat执行生成的最大时间(s秒数)
stop_stringsstr, array[str]配置模型生成的终止字符串,当模型生成参数配置的字符串,则终止生成。

2. 控制生成策略的参数

参数类型缺省值含义
do_sampleboolFalseTrue: 生成过程使用采样逻辑
False: 使用greedy做生成
num_beamsint1设置beam search 束的数量。如果是1不做beam search 搜索
num_beam_groupsint1为了保证生成的多样性,将num_beams 设置成多组。参考文献: https://arxiv.org/pdf/1610.02424.pdf
penalty_alphafloatcontrastive search decoding的配置项,用于平衡生成置信度和衰减的惩罚
dola_layersstr, List[int]str :
“None”: 不使用dola
“low” : 较低的一半layers, 最多20层使用dola
“high”: 较高的一半layers, 最多20层使用dola
List[int] : 通过指定一个index数组,指定dola 层
“low”: 提升长答案的task,
“high”:提升短答案的task

3.cache配置参数

参数类型缺省值含义
use_cacheboolTrue是否使用KV cache 加速推理速度
cache_implementationstr指定cache实现的name,在调用generate()时,实例化cache。
”static”: [StaticCache]
“offloaded_static”: [OffloadedStaticCache]
”sliding_window”: [SlidingWindowCache]
“hybrid”: [HybridCache]
“mamba”: [MambaCache]
”quantized”:[QuantizedCache]
cache_configCacheConfig , dictNonecache类使用的参数
return_legacy_cacheboolTrue当DynamicCache 被使用时,是否返回历史的和新格式的cache

4.操作模型输出logit的配置参数

参数类型缺省值含义
temperaturefloat1.0这个值用于建模下一个token的概率, 这个值被设置在generation_config.json文件中
top_kint50筛选最高概率的top k个词, 这个值被设置在generation_config.json文件中
top_pfloat1.0当设置<1时,筛选概率最高的token,累加概率不超过top_p的token
min_pfloat配置筛选概率最低的一批token, 累加概率不超过min_p,裁剪掉,该配置相当于top_p的反向操作
typical_pfloat1.0测量两个分布的相似性: 预测下一个目标token的概率 and 预测下一个随机Token的条件概率期望。如果设置<1,则筛选最典型的token。
epsilon_cutofffloat0.0按设置的值,卡掉低概率值的token,一般设置为:3e-4 to 9e-4
eta_cutofffloat0.0混合局部典型性采样和epsilon采样方法
diversity_penaltyfloat0.0只对group beam search方法生效,如果在某个特定时间生成的token与任何beam 组生成的token一致,则beam的score减去这个值
repetition_penaltyfloat1.01.0 默认不惩罚
encoder_repetition_penaltyfloat1.0对于不在原始输入的token,指数级的惩罚
length_penaltyfloat1.0对于beam 类的生成方法的长度惩罚,由于序列score是 log likelihood , > 0 倾向于更长的 <0 倾向于更短的
no_repeat_ngram_sizeint0如果大于0, 则对应的size的ngram只能出现1次
bad_words_idsList[List[int]]列出不允许生成的tokens_id
force_words_idsList[List[int]] or List[List[List[int]]]必须被生成的words_ids。 如果配置List[List[List[int]]] 设置对于每个token的约束
renormalize_logitsboolFalse对于所有的logits做后处理后,是否要再做下normalize
constraintsList[Constraint]通过定义一个List[Constraint] 对象数组,来确保输出是在某些限制的场景下。一般用于安全的场景
forced_bos_token_idintmodel.config.forced_bos_token_id强制跟在decoder_start_token_id之后的第一个token,对多语言模型是有用的
forced_eos_token_idint or List[int]model.config.forced_eos_token_id当生成的token达到max_length上限时,最后一位输出的token
remove_invalid_valuesboolmodel.config.remove_invalid_values是否移出可能生成的nan and inf 值,配置这个会减慢生成速度
exponential_decay_length_penaltytuple(int, float)指数级增加长度的惩罚,tuple(start_index, decay_factor) start index 指示惩罚的开始i,decay_factor 指数衰减的惩罚因子
suppress_tokensList[int]通过设置禁止的token的logit为-inf,来禁止token被sample
begin_suppress_tokensList[int]通过设置首位禁止的token的logit为-inf,来禁止首位这部分token被采样到,进而导致被生成
forced_decoder_idsList[List[int]]一个整数pair的数组,格式[生成index, token_index]指示固定位置强制生成某个token,例如[[1, 123]] 第二个位置总是生成token 123
sequence_biasDict[Tuple[int], float]token list -> bias的映射,正的bias提升几率,负的bias降低几率
token_healingboolFalse对prompt尾部的token做相似替换,以提升生成质量
guidance_scalefloat是一个缩放因子,当>1时,这个因子越高,越鼓励模型生成与prompt接近的samples 。
watermarking_configBaseWatermarkingConfig or dict对输出结果增加水印

5.输出结果配置参数

参数类型缺省值含义
num_return_sequencesint1对于batch中的每个元素,设置独立计算的返回的sequence的数量
output_attentionsboolFalse是否返回所有的attention的向量
output_hidden_statesboolFalse是否返回所有网络层的隐层状态
output_scoresboolFalse是否返回prediction scores
output_logitsbool是否返回未处理过的的logit score
return_dict_in_generateboolFalse除了返回生成序列,是否还返回a [`~utils.ModelOutput`]

6.生成时使用的特殊token的配置参数

参数类型缺省值含义
pad_token_idintpadding token ID
bos_token_idintbeginning -of – sequence token ID
eos_token_idUnion[int, List[int]]end-of-sequence token ID

6.辅助生成的配置参数(投机采样)

参数类型缺省值含义
is_assistantboolFalse指定是否模型是一个assistant(draft) model
num_assistant_tokensint20投机采样过程,每次迭代 assistant model 要输出多少个token,给到目标模型做check。配置更高的值,如果assistant model 效果好 能带来更好的加速比
num_assistant_tokens_schedulestrconstant“heuristic” : 当所有投机采样的token都正确时,将num_assistant_tokens增加2,否则减少1。
“constant”: num_assistant_tokens 保持固定不变
“heuristic_transient”: 类似于启发式方法,每次生成调用,都置成初始化的num_assistant_tokens值
assistant_confidence_thresholdfloat0.4当assistant model预估当前token的置信度 小于 阈值时,提前终止assistant model的生成
prompt_lookup_num_tokensint作为候选token 要输出的token的数量
max_matching_ngram_sizeint2match prompt的最大ngram的数量
assistant_early_exitint
assistant_lookbehindint10如果设置为正整数,则重新编码过程将额外考虑最后的assistant_lookbehind个辅助标记,以正确对齐标记。此设置仅可在推测解码中使用不同的分词器时使用。
target_lookbehindint10如果设置为正整数,则重新编码过程将额外考虑最后的target_lookbehind个辅助标记,以正确对齐标记。此设置仅可在推测解码中使用不同的分词器时使用。


如有整理错误,欢迎指正~

语音理解模型—OSUM

OSUM: Advancing Open Speech Understanding Models with Limited Resources in Academia

大型语言模型(LLMs)在各种下游任务中取得了显著进展,启发了业界对语音理解语言模型(speech understanding language models, SULMs)的研发,以期实现基于语音情感、性别等副语言的高表现力交互。然而,大多数先进的SULM是由行业头部公司开发的,消耗大规模的数据和计算资源。而这些资源在学术界并不容易获得。此外,虽然训练好的模型和推理代码被开源了,但训练框架和数据处理流程依然缺乏透明度,这也为进一步研究产生了障碍。在本研究中,我们提出了OSUM,一个开放的语音理解模型,旨在探索在有限的学术资源下训练SLUM的潜力。OSUM模型将Whisper编码器与Qwen2 LLM相结合,支持广泛的语音任务,包括语音识别(ASR)、带时间戳的语音识别(SRWT)、语音事件检测(VED)、语音情感识别(SER)、说话风格识别(SSR)、说话者性别分类(SGC)、说话者年龄预测(SAP)和语音转文本聊天(STTC)。通过采用ASR+X训练策略,OSUM通过同时优化模态对齐和目标任务,实现了高效稳定的多任务训练。除了提供强大的性能,OSUM还强调透明度,提供公开可用的代码,并详细介绍了数据处理流程,以期为学术界提供有价值的参考,旨在加速先进SULM技术的研究和创新。

方案设计 

OSUM模型将Whisper编码器与Qwen2 LLM相结合,支持广泛的语音任务,包括语音识别(ASR)、带时间戳的语音识别(SRWT)、语音事件检测(VED)、语音情感识别(SER)、说话风格识别(SSR)、说话者性别分类(SGC)、说话者年龄预测(SAP)和语音转文本聊天(STTC)。通过采用ASR+X训练策略,OSUM通过同时优化模态对齐和目标任务,实现了高效稳定的多任务训练。

模型结构

模型的输入包括语音和自然语言提示。不同于 Whisper 和Qwen-Audio 依靠指令标签,Osum采用描述性文本,将所有八个支持任务转换为图2所示。当前,我们的模型仅支持基于文本的响应,但是音频输出功能正在积极开发。

如图2所示,OSUM模型由一个Speech Encoder、一个Adaptor和一个LLM组成。在训练过程中,Speech Encoder和Adaptor中的所有参数都会更新,而大语言模型则使用LoRA方法进行微调。各部分具体配置如下:

  • Speech Encoder: Whisper-Medium (769M);
  • Adaptor: Conv1D * 3 + Transformer * 4,4倍下采样;
  • LLM: Qwen2-7B-Instruct带LoRA。LoRA hyperparameters-α, rank, and dropout ratio are set to 32, 8, and 0.1,

多任务监督训练

训练过程包括两个阶段:

首先,在没有LLM的情况下,对原始的Whisper模型进行多任务监督微调,多任务数据微调了 Whisper ,以确保OSUM模型的更快收敛。此外,此阶段使我们能够验证多任务数据的可靠性。具体来说,我们扩展了Whisper的指示标签,以适应更多的任务,每个前向推理仅执行一个任务。

其次,将微调后的Whisper编码器与Qwen2大语言模型相结合,构建出完整的OSUM系统,然后使用更大的数据集进行进一步的监督训练。

OSUM模型的输入包括一段语音和一个自然语言描述的prompt,而输出在现阶段仅支持文本回复,音频输出功能正在开发中。为节省计算资源,OSUM的多任务训练引入了一种“ASR+X”范式,即同时训练ASR任务和一个附加任务X。这在加速训练的同时,允许执行X任务时参考文本和声学两种特征,从而提升性能和训练稳定性。“ASR+X”范式是在LLM的自回归框架内通过调整预测标签来实现的,无需对模型架构或损失函数进行修改。执行不同的X任务是通过给LLM不同的自然语言prompt来实现的,每个任务有5个候选prompt,训练时随机选择一个。prompt的示例如表1所示。

训练数据

OSUM旨在使用多样化的语音数据集进行多任务训练,目标是构建一个能够在对话场景中全面理解输入语音的统一模型。多任务训练过程使各个任务能够从共享学习中获益,从而提升模型的整体性能。有关用于训练的数据集的详细信息见表2所示,本版本模型的训练数据规模大约为5万小时。

技术性能

总览

如图2所示,OSUM 模型和Qwen2-Audio 相比,在大多数任务中,尽管 OSUM 使用的计算资源和训练数据明显更少,但它的表现优于Qwen2-Audio。

图2 OSUM与Qwen2-Audio各项任务性能对比的雷达图。雷达图中每个模型各项任务的值是基于公开测试集和内部测试集的平均结果得出的

各项指标与性能演示

ASR(语音识别):如表4所示,OSUM在中文ASR上表现优越,具体地,在WenetSpeech test meeting、3个AISHELL-2子测试集以及4个内部使用的SpeechIO测试集上优于其他模型。OSUM在英语测试集上性能也可与SenseVoice-S相媲美。值得注意的是,这些结果是在使用少得多的训练数据的情况下取得的。此外,我们发现,即使在训练过程中未纳入中英混语料数据集,OSUM在识别中英混语音方面也展现出了令人惊讶的出色能力。

表4公开测试集和内部测试集上ASR任务的评估结果。加粗字体表示同一测试集中的最佳结果。所有内部测试结果均由我们自行推理得出

表45公开测试集和内部测试集上多任务的评估结果。每个测试集的最佳结果都用粗体突出显示。蓝色字体显示的结果以及内部测试集的结果,均是我们使用原始发布的模型自行推理得出的

SRWT(带时间戳的语音识别):如表5所示,OSUM模型在SRWT任务上的性能显著优于Whisper-Large-v3,相对优势达到了36.70%,并且也超过了Qwen-Audio。此外,OSUM的表现甚至略微超过了GMM-HMM模型,而后者在时间戳预测任务被广泛使用。另外,此功能不仅使得OSUM能够以端到端的方式预测时间戳,更重要的是,它引导OSUM模型理解了“时间”这一概念。在将来,我们将会利用这一能力继续开发更灵活的应用,例如判断音频中何时出现了语音事件,何时出现了说话人转换等。

VED(语音事件检测):我们首先在公开测试集ESC-50和VocalSound上评估OSUM的性能。ESC-50包含大量的非人声音频事件,我们将它们归类为“其他”。表45示的实验结果表明,OSUM可以成功地将这些非人声音频事件归类为“其他”。此外,在VocalSound数据集上的结果显示,OSUM与Qwen2-audio相比虽然存在一定差距,但也取得了超过80%的准确率。值得注意的是,为更加符合真实使用场景,我们的训练数据是语音和音频事件拼接而成,但公开测试集只有孤立的音频事件而没有说话语音。即便存在这一不匹配的情况,OSUM模型的在公开测试集上的结果也证明了其有效性和泛化性。与公开测试集不同,我们人工录制了同时包含语音和声学事件的内部测试集。表45结果表明,PANNs由于其仅为孤立音频事件检测而设计,在我们内部测试集中基本处于不可用状态。Qwen2-audio的表现相对较好,但也出现了性能下降。相比之下,OSUM模型在公开测试集和内部测试集上都取得了较为均衡的结果,展现出了更强的泛化能力。

SER(语音情感识别):如表45示,对于SER任务,使用公开数据集的实验中,OSUM在MER2023测试集上展现出了卓越的性能,超过了一些近期的公开基准模型。在MELD数据集上,OSUM的性能略低于SenseVoice-L模型,这很可能是因为后者在更大规模的语音情感数据集上进行了训练。此外,OSUM在内部测试集上的结果与EmoBox模型相当,显著优于其他对比方法。但是,我们也观察到,厌恶和恐惧这两种情感尤其难以识别,其归因于这两种情感的训练数据更加稀缺,也容易和其他情感混淆。

SSR(说话风格识别):表5中实验表明,OSUM所采用的声学-文本双模态风格分类方法的表现显著优于GLM-4-9B-Chat所采用的单文本模态方法,这充分证明了“ASR+X”策略的价值。现阶段OSUM能够区分八种风格:“新闻科普”,“恐怖故事”,“童话故事”,“客服”,“诗歌散文”,“有声书”,“日常口语”以及“其他”。我们详细分析了测试集上各类别的准确率,发现OSUM在对“新闻科普”、“有声书”、“童话故事”以及“客服”风格类别上表现出色;然而,在“诗歌散文”、“恐怖故事”类别上仍有提升空间。有趣的是,我们发现从实际测试的主观体验上来说,OSUM风格分类正确率是超过测试集的,总体来说可以让人满意。

SGC(说话者性别分类):在SGC公开测试集上的结果表明,OSUM在AISHELL-1测试集上达到了100%的准确率。这一结果在一定程度上表明该任务上存在说话人过拟合现象。此外,在Kaggle测试集上,我们的方法略优于Qwen2-Audio。但在我们的内部测试集上,OSUM的性能略低于Qwen2-Audio,但依然超过了95%。总之,OSUM在SGC任务上展现出了不错的性能,而且实测效果很少出现性别判断错误的情况。

SAP(说话者年龄预测):在SAP任务上,由于我们发现青少年和成年人的声学相似度非常高,这使得有效区分他们变得很复杂。因此,我们将年龄分为三类:儿童、成年人和老年人。尽管我们努力调试了prompt,但Qwen2-Audio在Kaggle测试集和我们的内部测试集上,年龄分类准确率都较低。这可能是因为这些模型对年龄的分类过于细致,从而影响了Qwen2-Audio模型的最终效果。表4中结果显示,OSUM在Kaggle测试集上显著优于Qwen2-Audio,达到了76.52%的准确率。在我们的内部测试集上OSUM分类准确率虽然略有下降,但仍然超过了Qwen2-Audio。这表明OSUM在不同的数据上表现出了很强的泛化能力。

STTC(语音转文本聊天):如表5所示,在STTC任务中,我们在所有测试集上都遵循了AirBench的评估协议。这包括提供音频查询的文本以及两个不同答案的文本,让基于文本的大语言模型(LLM)给出1到10的主观评分。这两个答案一个是真实回复,另一个是语音大语言模型(SULM)生成的答案。测试结果表明,在AirBench的官方speech子测试集上,OSUM的得分虽然低于Qwen2-Audio,但也处于一个合理范围。这主要是因为我们没有使用英语对话数据进行训练,目前的得分完全依赖于大语言模型自身的表现。反之,在我们内部的中文对话测试集上,OSUM的表现优于Qwen2-Audio,这充分证明了OSUM在中文对话任务上性能是不错的。总体而言,我们的OSUM模型在对话能力方面与Qwen2-Audio相当。

更多功能

OSUM理解大模型在将来会提供更多的功能,可作为通用语音打标工具使用。此外,我们正在开发的功能包括:

  1. 同时支持ASR+X和单X任务模式,在执行单X任务打标时推理速度更快。
  2. 同时输出ASR+X1+X2+..Xn的多任务打标模式,一次性提供几乎全部所需标签。
  3. 增加更多的理解任务。

Step-Audio:产品级开源实时语音对话模型

阶跃星辰:Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤),方言(如 粤语,四川话),可控制语速及韵律风格,支持RAP和哼唱等。其核心技术突破体现在以下四大技术亮点:

  • 1300亿多模态模型: 单模型能实现理解生成一体化完成语音识别、语义理解、对话、语音克隆、语音生成等功能,开源千亿参数多模态模型 Step-Audio-Chat
  • 高效数据生成链路: 基于130B 突破传统 TTS 对人工采集数据的依赖,生成高质量的合成音频数据,并同步开源首个基于大规模合成数据训练,支持 RAP 和哼唱的指令加强版语音合成模型 Step-Audio-TTS-3B ,该模型具有增强的指令遵循功能以控制语音综合的能力。
  • 精细语音控制: 支持多种情绪(如生气,高兴,悲伤)、方言(包括粤语、四川话等)和唱歌(包括 RAP、干声哼唱)的精准调控,满足用户对多样化语音生成的需求。
  • 扩展工具调用: 通过 ToolCall 机制和角色扮演增强,进一步提升其在 Agents 和复杂任务中的表现。
端到端语音相互作用的人类评估。

模型组成

图2 采用了AQTA(音频输入,文本输出) + TTS框架 进行实时语音对话

Step-Audio的体系结构。 Step-Adio主要由三个组成部分组成:语音令牌,LLM和语音解码器。语音令牌器负责将输入语音离散到令牌中。LLM模型接收文本和语音令牌,输出文本,而语音解码器生成波形输出。

传统的语音对话系统通常采用包括ASR的级联建筑,LLM和TTS模块。但是,我们提出的模型在训练阶段进行了全面的多模式培训以及对文本和音频的一致性,已经具有端到端的语音对话功能。尽管对替代设计进行了广泛的探索,但我们最终采用了AQTA(音频输入,文本输出) + TTS框架 进行实时语音对话,如图2所示,这是由以下考虑的驱动的:

  • 高质量的纯净对话数据的稀缺性:纯净对话数据的可用性有限,再加上其受限的场景,限制了端到端语音对话模型的训练效率。
  • 输出语音的可控性和自定义:通过引入TTS模块,我们可以灵活地控制语音参数,例如音色和音调,以满足用户的个性化需求,同时不断增强模型的表现力能力。

在Step-Audio系统中,音频流采用Linguistic tokenizer【语义】(码率16.7Hz,码本大小1024)与Semantice tokenizer【声学】(码率25Hz,码本大小4096)并行的双码本编码器方案,双码本在排列上使用了2:3时序交错策略。通过音频语境化持续预训练和任务定向微调强化了130B参数量的基础模型(Step-1),最终构建了强大的跨模态语音理解能力。为了实现实时音频生成,系统采用了混合语音解码器,结合流匹配(flow matching)与神经声码技术。此外,采用语音活动检测(VAD)模块提取声段。

Tokenizer

我们通过token级交错方法实现Linguistic token与Semantic token的有效整合。Linguistic tokenizer的码本大小是1024,码率16.7Hz;而Semantic tokenizer则使用4096的大容量码本来捕捉更精细的声学细节,码率25Hz。鉴于两者的码率差异,我们建立了2:3的时间对齐比例——每两个Linguistic token对应三个Linguistic token形成时序配对

语言模型

为了提升Step-Audio有效处理语音信息的能力,并实现精准的语音-文本对齐,我们在Step-1(一个拥有1300亿参数的基于文本的大型语言模型LLM)的基础上进行了音频持续预训练。

在多轮对话系统中音频令牌和文本令牌之间的长度差异需要有效的处理策略。为了解决这个问题,历史信息最初是在系统输入之前使用ASR模型转录为文本格式的,从而优化了计算效率。但是,应注意的是,模型体系结构在需要时保持处理和使用音频令牌作为历史上下文的能力。

语音解码器

Step-Audio语音解码器主要是将包含语义和声学信息的离散标记信息转换成连续的语音信号。该解码器架构结合了一个30亿参数的语言模型、流匹配模型(flow matching model)和梅尔频谱到波形的声码器(mel-to-wave vocoder)。为优化合成语音的清晰度(intelligibility)和自然度(naturalness),语音解码器采用双码交错训练方法(dual-code interleaving),确保生成过程中语义与声学特征的无缝融合

实时推理管线

为了实现实时的语音交互,我们对推理管线进行了一系列优化。其中最核心的是控制模块(Controller),该模块负责管理状态转换、协调响应生成,并确保关键子系统间的无缝协同。这些子系统包括:

  • 语音活动检测(VAD):实时检测用户语音起止
  • 流式音频分词器(Streaming Audio Tokenizer):实时音频流处理。输入音频流是通过两个平行的令牌管道处理的,每个管道都采用固定持续分段。将所得令牌无缝合并为2:3交织比的单个序列。没有流音频令牌,根据音频输入的长度,推理时间将明显较慢。
  • Step-Audio语言模型与语音解码器:多模态回复生成
  • 上下文管理器(Context Manager):动态维护对话历史与状态。我们的系统利用文本转录而不是原始的音频令牌来实现历史上下文,因为它提供了更紧凑的表示(平均文本审计代币比率为1:14),提高性能,并启用更长的对话,对质量的影响最小的影响很小。 ASR异步将用户语音转录为文本,并保持准确,最新的对话历史记录。

后训练细节

在后训练阶段,我们针对自动语音识别(ASR)与文本转语音(TTS)任务进行了专项监督微调(Supervised Fine-Tuning, SFT)。对于音频输入-文本输出(Audio Question Text Answer, AQTA)任务,我们采用多样化高质量数据集进行SFT,并采用了基于人类反馈的强化学习(RLHF)以提升响应质量,从而实现对情感表达、语速、方言及韵律的细粒度控制。

TTS模型:

解决TTS任务中高质量语音数据的稀缺性

Training Detail

与传统的语音合成(TTS)系统注重对说话人特征、情感表达、语言特征和风格元素的精细控制不同,我们的方法采用了基于聊天的范式和大型语言模型(LLMs)的训练方法。这一战略对齐显著增强了系统的灵活性,同时建立了一个可扩展的框架,以支持未来模型和数据的扩展,从而解决了语音合成系统在可扩展性方面的关键挑战。

监督的微调格式:

SFT格式包括三个基本组成部分:系统提示、人类输入和助手回复,采用两轮对话结构。在这种格式中,系统提示作为指定说话人属性和定义支持的指令标签的基础元素。人类输入和助手回复部分则专门用于处理文本内容和双词典表示。第一轮的文本和音频标记可以用来保持领域内说话人的音色和风格一致性,同时也支持领域外的零样本克隆。

指令标签

指令标签分为两种不同的类别:描述性标签和比较性标签。描述性标签用于控制语言、方言、声音和风格等方面,而比较性标签则用于情感和语速控制的层次化区分。描述性标签的数据是通过Step-Audio模型克隆生成的,支持包括日语、韩语、粤语、四川方言、可爱声音、说唱和唱歌等语言和风格。比较性标签的数据则是通过Audio Edit模型生成的,支持诸如快乐、愤怒、悲伤等情感,以及快慢等语速变化,每种变化都被分为五个层级。

我们使用第5.1.1节中概述的SFT数据,并采用一个具有30亿参数的模型,训练一个周期,初始学习率为 2×10−5。学习率采用余弦衰减策略进行调整,最低值设置为 2×10−6。

AQTA:

我们为AQTA任务应用了基于人类反馈的强化学习(RLHF),从而创建了Step-Audio-Chat模型,如图6所示。

说明:

用了AQTA(音频输入,文本输出) + TTS框架 情况下是如何实现多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤),方言(如 粤语,四川话),可控制语速及韵律风格,支持RAP和哼唱

通过TTS【cosyvoice】代码可知,LLM的文本输出中会包含 {语言}【情感】 [语速] 这样的文本输出,然后TTS用于合成对应的音频: 使用[{}]的声音,根据这些情感标签的指示,调整你的情感、语气、语调和哼唱节奏

    self.sys_prompt_dict = {
        "sys_prompt_for_rap": "请参考对话历史里的音色,用RAP方式将文本内容大声说唱出来。",
        "sys_prompt_for_vocal": "请参考对话历史里的音色,用哼唱的方式将文本内容大声唱出来。",
        "sys_prompt_wo_spk": '作为一名卓越的声优演员,你的任务是根据文本中()或()括号内标注的情感、语种或方言、音乐哼唱、语音调整等标签,以丰富细腻的情感和自然顺畅的语调来朗读文本。\n# 情感标签涵盖了多种情绪状态,包括但不限于:\n- "高兴1"\n- "高兴2"\n- "生气1"\n- "生气2"\n- "悲伤1"\n- "撒娇1"\n\n# 语种或方言标签包含多种语言或方言,包括但不限于:\n- "中文"\n- "英文"\n- "韩语"\n- "日语"\n- "四川话"\n- "粤语"\n- "广东话"\n\n# 音乐哼唱标签包含多种类型歌曲哼唱,包括但不限于:\n- "RAP"\n- "哼唱"\n\n# 语音调整标签,包括但不限于:\n- "慢速1"\n- "慢速2"\n- "快速1"\n- "快速2"\n\n请在朗读时,根据这些情感标签的指示,调整你的情感、语气、语调和哼唱节奏,以确保文本的情感和意义得到准确而生动的传达,如果没有()或()括号,则根据文本语义内容自由演绎。',
        "sys_prompt_with_spk": '作为一名卓越的声优演员,你的任务是根据文本中()或()括号内标注的情感、语种或方言、音乐哼唱、语音调整等标签,以丰富细腻的情感和自然顺畅的语调来朗读文本。\n# 情感标签涵盖了多种情绪状态,包括但不限于:\n- "高兴1"\n- "高兴2"\n- "生气1"\n- "生气2"\n- "悲伤1"\n- "撒娇1"\n\n# 语种或方言标签包含多种语言或方言,包括但不限于:\n- "中文"\n- "英文"\n- "韩语"\n- "日语"\n- "四川话"\n- "粤语"\n- "广东话"\n\n# 音乐哼唱标签包含多种类型歌曲哼唱,包括但不限于:\n- "RAP"\n- "哼唱"\n\n# 语音调整标签,包括但不限于:\n- "慢速1"\n- "慢速2"\n- "快速1"\n- "快速2"\n\n请在朗读时,使用[{}]的声音,根据这些情感标签的指示,调整你的情感、语气、语调和哼唱节奏,以确保文本的情感和意义得到准确而生动的传达,如果没有()或()括号,则根据文本语义内容自由演绎。',
    }

VITA-1.5:GPT-4o级别的实时视觉和语音交互模型

[📖 VITA-1.5 Paper] [🤖 Basic Demo] [🍎 VITA-1.0]

[📽 VITA-1.5 Demo Show! Here We Go! 🔥]

引言

近年来,多模态大语言模型(MLLMs)在视觉和文本的结合上取得了显著进展。然而,随着人机交互需求的增加,语音在多模态对话系统中的作用变得愈发重要。语音不仅是信息传递的关键媒介,还能显著提升交互的自然性和便捷性。因此,如何将视觉和语音模态高效整合,实现高性能的多模态交互,成为了当前研究的重点。

VITA-1.5的提出正是为了解决这一挑战。通过精心设计的多阶段训练方法,VITA-1.5逐步训练大语言模型(LLM)理解视觉和语音信息,最终实现了流畅的视觉和语音交互。与现有模型相比,VITA-1.5不仅保留了强大的视觉-语言能力,还实现了高效的语音对话能力,显著加速了多模态端到端的响应速度。

VITA-1.5

模型架构

图 2:VITA-1.5 的整体架构。输入端由视觉和音频编码器及其连接到 LLM 的适配器组成。输出端有一个端到端的语音生成模块,而不是像初始 VITA-1.0 版本那样直接使用外部 TTS 模型。

VITA-1.5的整体架构如图2所示。输入侧与VITA-1.0版本相同,采用“多模态编码器-适配器-LLM”的配置。它将视觉/音频Transformer和多层连接器与LLM结合进行联合训练,旨在增强对视觉、语言和音频的统一理解。在输出侧,VITA-1.5拥有自己的端到端语音模块,而不是像原始VITA-1.0版本那样使用外部TTS模型。

视觉模态

视觉编码器:VITA-1.5采用InternViT-300M作为视觉编码器,输入图像大小为448×448像素,每张图像生成256个视觉标记。对于高分辨率图像,VITA-1.5采用动态分块策略捕捉局部细节,提高图像理解的准确性。

视频处理:视频被视为一种特殊的多图像输入。如果视频长度短于4秒,则均匀采样4帧;对于4到16秒的视频,每秒采样一帧;对于超过16秒的视频,均匀采样16帧。视频帧不应用动态分块,以避免过多的视觉标记影响处理效率。

视觉适配器:使用两层MLP将视觉特征映射到适合LLM理解的视觉标记。

音频模态

语音编码器:类似于[56],我们的音频编码模块由多个下采样卷积层(4倍下采样)和24个Transformer块(隐藏大小为1024)组成。下采样层有助于降低音频特征的帧率,提高LLM的处理速度。音频编码器约有350M参数,输出帧率为12.5Hz。使用Mel滤波器组特征作为音频编码器的输入,窗口大小为25ms,偏移为10ms。

语音适配器:由多个2倍下采样的卷积层组成。

语音解码器:使用TiCodec作为我们的编解码模型,定制了一个大小为1024的单码本。这种单码本设计简化了推理阶段的解码过程。编解码模型负责将连续语音信号编码为离散语音标记,频率为40Hz,同时能够将这些标记解码回采样率为24,000Hz的语音信号。

当前的LLM只能输出文本标记,语音生成能力要求LLM能够输出语音标记。为此,我们在文本标记后添加了两个语音解码器:1)非自回归(NAR)语音解码器,全局处理文本标记并建模语义特征,旨在生成语音标记的初始分布;2)自回归(AR)语音解码器,基于NAR解码器生成的语音信息逐步生成更高质量的语音标记。最终的语音标记序列通过编解码模型的语音解码器解码为连续语音信号流(波形)。我们为NAR和AR语音解码器采用了4个LLaMA解码层,隐藏大小为896,参数大小约为120M。

训练数据

如表1所示,多模态指令微调的训练数据涵盖了广泛的类别,如描述数据和问答数据,包括中文和英文。在不同的训练阶段,从整体数据集中选择性地采样子集以服务于不同的目标。具体来说,数据集分类如下:

  • 图像描述数据:使用ShareGPT4V、ALLaVA-Caption、SharedGPT4o-Image和合成数据等数据集训练模型生成图像的描述性语言。
  • 图像问答数据:使用LLaVA-150K、LLaVA-Mixture-sample、LVIS-Instruct、ScienceQA、ChatQA和从LLaVA-OV采样的子集(如通用图像问答和数学推理数据集)等数据集训练模型回答基于图像的问题和执行视觉推理任务。
  • OCR和图表数据:支持模型理解OCR和图表内容,使用Anyword-3M、ICDAR2019-LSVT、UReader、SynDOG、ICDAR2019-LSVT-QA和从LLaVA-OV采样的相应数据等数据集。
  • 视频数据:使用ShareGemini和合成数据等数据集训练模型处理视频输入并执行诸如描述和基于视频的问答等任务。
  • 纯文本数据:增强模型理解和生成语言的能力,促进基于文本的问答任务。

除了表1中列出的图像和视频数据外,还纳入了110,000小时的内部语音-转录配对ASR数据,涵盖中文和英文,用于训练音频编码器并将音频编码器与LLM对齐。此外,使用TTS系统生成的3,000小时文本-语音配对数据用于训练语音解码器。

三阶段训练策略

为了确保VITA-1.5在涉及视觉、语言和音频的任务中表现良好,我们必须面对一个关键挑战,即不同模态之间的训练冲突。例如,添加语音数据可能会对视觉数据的理解产生负面影响,因为语音的特征与视觉的特征显著不同,导致学习过程中的干扰。为了解决这一挑战,我们设计了一个三阶段训练策略,如图3所示。核心思想是逐步将不同模态引入模型,使其在增加新模态能力的同时保持现有模态的能力。

VITA-1.5的训练管道。训练过程分为三个阶段,以逐步将视觉和音频纳入LLM同时缓解了形态冲突。第一阶段的重点是视觉训练,包括视觉对齐(阶段1.1,使用表1中的20%字幕数据),视觉理解(阶段1.2,使用100%的字幕数据)以及用于Visual QA的指令调整(阶段1.3,使用20%字幕数据和100%QA数据)。阶段2引入音频输入调整,并具有音频对齐(阶段2.1,使用11,000小时的语音转录对)和语音质量检查的指令调整(阶段2.2,采样4%字幕数据和20%的QA数据)。最后,第3阶段的重点是音频输出调整,包括对编解码器模型的训练(使用3,000个小时的文本语音数据)和语音解码器培训(阶段3.2)。图像中显示的百分比对应于表1中指定的数据采样率。

阶段1:视觉训练

阶段1.1 视觉对齐:在此阶段,我们的目标是弥合视觉和语言之间的差距。前者的特征从预训练的视觉编码器InternViT-300M中提取,后者通过LLM引入。我们使用表1中20%的描述性描述数据进行训练,其中只有视觉适配器是可训练的,而其他模块是冻结的。这种方法允许LLM初步对齐视觉模态。

阶段1.2 视觉理解:在此阶段,我们的目标是教会LLM转录图像内容。为此,我们使用表1中所有的描述性描述数据。在此过程中,视觉模块的编码器和适配器以及LLM都是可训练的。重点是使模型通过学习关于图像的描述性文本,建立视觉和语言之间的强连接,使其能够通过生成自然语言描述来理解图像内容。

阶段1.3 视觉SFT:在阶段1.2之后,模型已经获得了对图像和视频的基本理解。然而,指令跟随能力仍然有限,难以应对视觉问答任务。为了实现这一点,我们使用表1中所有的问答数据,同时保留20%的描述性描述数据以增加数据集的多样性和任务的复杂性。

在训练过程中,视觉模块的编码器和适配器以及LLM都是可训练的。此阶段的关键目标是使模型不仅能够理解视觉内容,还能够根据指令回答问题。

阶段2:音频输入微调

阶段2.1 音频对齐:在完成阶段1的训练后,模型已经建立了强大的图像和视频理解基础。在此阶段,我们的目标是基于阶段1减少音频和语言之间的差异,使LLM能够理解音频输入。训练数据包括11,000小时的语音-转录对。我们采用两步方法:(a)语音编码器训练:我们采用常见语音识别系统中使用的训练框架,使用连接时序分类(CTC)损失函数[18]训练语音编码器。目的是使编码器从语音输入中预测转录文本。此步骤确保音频编码器能够提取语音特征并将其映射到文本表示空间。(b)语音适配器训练:在训练语音编码器后,我们将其与LLM集成,使用音频适配器将音频特征引入LLM的输入层。此阶段的训练目标是使LLM能够输出语音数据的转录文本。

此外,在步骤(b)中,我们引入了特殊的可训练输入标记来指导语音理解过程。这些标记提供了额外的上下文信息,指导用于问答任务的LLM执行ASR任务。

阶段2.2 音频SFT:此阶段的重点是引入语音问题和文本答案的问答功能。为此,我们从表1中采样4%的描述数据和20%的问答数据。在数据处理方面,大约一半的基于文本的问题被随机替换为其对应的语音版本,使用TTS系统生成。

在此阶段,视觉编码器和适配器、音频编码器和适配器以及LLM都是可训练的,旨在提高模型对多模态输入的适应性。此外,我们在LLM的输出中添加了一个分类头。该头用于区分输入是来自语音还是文本。结果,模型可以更准确地解释语音输入,并高效灵活地处理不同模态。

阶段3:音频输出微调

在前两个训练阶段,VITA-1.5模型已经有效地发展了其多模态理解能力。然而,一个关键的能力,即语音输出,仍然缺失,这对于其作为交互助手的角色至关重要。为了在不影响模型基本能力的情况下引入语音输出功能,我们借鉴了[56]的策略,使用3,000小时的文本-语音数据,并采用两步训练方法(见图3)。

阶段3.1 编解码训练:此步骤的目标是使用语音数据训练具有单码本的编解码模型。编解码模型的编码器能够将语音映射到离散标记,而解码器可以将离散标记映射回语音流。在VITA-1.5的推理阶段,仅使用解码器。

阶段3.2 NAR + AR解码器训练:此阶段的训练使用文本-语音配对数据,其中文本被输入到LLM的分词器和嵌入层以获得其嵌入向量,语音被输入到编解码模型的编码器以获得其语音标记。文本嵌入向量被发送到NAR语音解码器以获得全局语义特征,然后将这些特征发送到AR语音解码器,预测相应的语音标记。请注意,在此阶段LLM是冻结的,因此多模态性能不受影响。

评估

视觉-语言评估

基线:我们比较了一系列开源MLLMs,包括VILA-1.5、LLaVA-Next、CogVLM2、InternLM-XComposer2.5、Cambrian-1、MiniCPM-V-2.6、Ovis1.5、InternVL-Chat-1.5、InternVL-2、LLaVA-OV和Video-LLaVA、SilME和LongVA,以及5个闭源MLLMs,包括GPT-4V、GPT-4o、GPT-4o-mini、Gemini 1.5 Pro和Claude 3.5 Sonnet。

评估基准:为了评估VITA-1.5的图像感知和理解能力,我们使用了多个评估基准,包括MME、MMBench、MMStar、MMMU、MathVista、HallusionBench、AI2D、OCRBench和MMVet。这些基准涵盖了广泛的方面,包括通用多模态能力(如MME、MMBench和MMMU)、数学推理(MathVista)、幻觉检测(HallusionBench)、图表(AI2D)和OCR(OCRBench)理解,提供了全面的评估结果。对于视频理解,我们使用了代表性的评估基准,包括Video-MME、MVBench和TempCompass。

视觉-语言能力:表2展示了VITA-1.5的图像理解性能比较。在三个阶段的训练后,VITA-1.5的表现与最先进的开源模型相当,甚至超过了一些闭源模型,如GPT-4V和GPT-4o-mini。这一结果突显了VITA-1.5在图像-语言任务中的强大能力。如表3所示,VITA-1.5在视频理解评估中表现出与顶级开源模型相当的性能。与专有模型的显著差距表明,VITA-1.5在视频理解方面仍有显著的改进空间和潜力。请注意,在阶段2(音频输入微调)和阶段3(音频输出微调)的训练后,VITA-1.5几乎保留了其在阶段1(视觉-语言训练)中的原始视觉-语言能力。

语音评估

基线:以下三个基线模型用于比较:Wav2vec2-base、Mini-Omini2、Freeze-Omini和VITA-1.0。

评估基准普通话评估集包括三个数据集:aishell-1、test net和test meeting。这些数据集用于评估模型在普通话语音上的表现。评估指标是字符错误率(CER)。英语评估集包括四个数据集:dev-clean、dev-other、test-clean和test-other,用于评估模型在英语语音上的表现。评估指标是词错误率(WER)。

ASR性能:表4中的评估结果表明,VITA-1.5在普通话和英语ASR任务中均取得了领先的准确性。这表明VITA-1.5已成功集成了先进的语音能力,以支持多模态交互。

结论

本文介绍了VITA-1.5,这是一个通过精心设计的三阶段训练策略整合视觉和语音的多模态LLM。通过缓解模态之间的固有冲突,VITA-1.5在视觉和语音理解方面实现了强大的能力,无需依赖单独的ASR或TTS模块即可实现高效的语音到语音交互。广泛的评估表明,VITA-1.5在多模态基准测试中表现出色。我们希望VITA-1.5能够接过VITA-1.0的旗帜,继续推动开源模型在实时多模态交互领域的进步。

ASR语音识别指标计算

#coding=utf-8
import os
import sys
import re
from typing import List, Union
import jiwer
import pdb


def cal_wer(path_ref, path_hyp, metric_type, output_detail, path_output):

    ref_text, hyp_text, ref_key = _read_file(path_ref, path_hyp, metric_type)
    
    cal_wer_from_list(ref_text, hyp_text, ref_key, metric_type, output_detail, path_output)


def cal_wer_from_list(
    reference: Union[str, List[str]], 
    hypothesis: Union[str, List[str]], 
    key: Union[str, List[str]], 
    metric_type: str, 
    output_detail: bool, 
    path_output: str
):
    if isinstance(reference, str):
        reference = [reference]
    if isinstance(hypothesis, str):
        hypothesis = [hypothesis]
    if isinstance(key, str):
        key = [key]

    # 根据ref是否为空, 先分别计算wer指标再汇总
    ref_normal, hyp_normal, key_normal = [], [], []
    ref_empty, hyp_empty, key_empty = [], [], []
    for i in range(len(reference)):
        if len(reference[i]) != 0:
            ref_normal.append(reference[i])
            hyp_normal.append(hypothesis[i])
            key_normal.append(key[i])
        else:
            ref_empty.append(reference[i])
            hyp_empty.append(hypothesis[i])
            key_empty.append(key[i])

    res_normal, out_normal = _cal_wer_normal(ref_normal, hyp_normal, metric_type)
    res_empty, out_empty = _cal_wer_empty(hyp_empty, metric_type)
    _summary(ref_normal, hyp_normal, res_normal, out_normal.alignments, key_normal, 
             hyp_empty, res_empty, out_empty, key_empty, 
             metric_type, output_detail, path_output)


def _read_file(path_ref, path_hyp, metric_type):
    ref_key, ref_text = _preprocess(path_ref, '\t', metric_type)
    hyp_key, hyp_text = _preprocess(path_hyp, '\t', metric_type)

    tmp_dict = {}
    tmp_text = []
    for i in range(len(hyp_key)):
        if hyp_key[i] not in tmp_dict.keys():
            tmp_dict[hyp_key[i]] = hyp_text[i]
        else:
            print ("repeated key")
    for i in range(len(ref_key)):
        if ref_key[i] in tmp_dict.keys():
            tmp_text.append(tmp_dict[ref_key[i]])
        else:
            tmp_text.append("")

    return ref_text, tmp_text, ref_key


def _preprocess(path_in, sep, metric_type):
    res_key, res_text = [], []

    with open(path_in, "r", encoding="utf-8") as f_in:
        lines = f_in.readlines()
        for line in lines:
            line = line.strip().split(sep, 1)
            if len(line) == 2:
                key, text = line
                text = re.sub("<s>", "", text)
                text = re.sub("</s>", "", text)
                text = re.sub("<unk>", "", text)
                text = re.sub("@@ ", "", text)
                text = re.sub("@ ", "", text)
                text = re.sub("@@", "", text)
                text = re.sub("@", "", text)
                #text = re.sub(" ", "", text)
                text = text.lower()
            else:
                key = line[0]
                text = ""

            text = [x for x in text]
            text_tmp = ""
            if metric_type == "wer":
                for ch in text:
                    if '\u4e00' <= ch <= '\u9fff':
                        text_tmp += " " + ch + " "
                    else:
                        text_tmp += ch
                text = text_tmp.strip().replace("  ", " ")
            elif metric_type == "cer":
                text_tmp = "".join(text)
                text = text_tmp.strip().replace(" ", "")
            else:
                assert False

            res_key.append(key)
            res_text.append(text)

    return res_key, res_text


def _cal_wer_normal(reference, hypothesis, metric_type):
    if metric_type == "wer":
        out = jiwer.process_words(reference=reference, hypothesis=hypothesis)
        ERR = out.wer
    elif metric_type == "cer":
        out = jiwer.process_characters(reference=reference, hypothesis=hypothesis)
        ERR = out.cer
    else:
        assert False

    H = out.hits
    S = out.substitutions
    D = out.deletions
    I = out.insertions
    N = H + S + D

    res = [ERR, N, S, D, I]

    return res, out


def _cal_wer_empty(hypothesis, metric_type):
    out = []

    I = 0
    for hyp in hypothesis:
        if hyp == "":
            i = 0
        else:
            if metric_type == "wer":
                i = len(hyp.split(" "))
            elif metric_type == "cer":
                i = len(hyp)
            else:
                assert False
        I += i
        out.append(i)

    res = [0, 0, 0, 0, I]

    return res, out


def _summary(ref_normal, hyp_normal, res_normal, out_normal, key_normal,
             hyp_empty, res_empty, out_empty, key_empty, 
             metric_type, output_detail, path_output):
    # wer/cer计算
    _, N, S, D, I = res_normal
    I += res_empty[-1]
    if N != 0:
        ERR = (S + D + I) / N
        SUB = S / N
        DEL = D / N
        INS = I / N
        N_WORD = N
    else:
        if I == 0:
            ERR = 0
        else:
            ERR = 1
        SUB, DEL, INS, N_WORD = 0, 0, I, 0

    # 句准计算 + 详细错误指标 + 详细错误统计
    utt_normal, alignments_normal, statistics_normal = _analyse_normal(
        ref_normal, hyp_normal, out_normal, key_normal, metric_type)
    utt_empty, alignments_empty, statistics_empty = _analyse_empty(
        hyp_empty, out_empty, key_empty, metric_type)

    utt = utt_normal + utt_empty
    alignments = alignments_normal + alignments_empty
    for key in statistics_empty['insert'].keys():
        if key not in statistics_normal['insert'].keys():
            statistics_normal['insert'][key] = statistics_empty['insert'][key]
        else:
            statistics_normal['insert'][key] += statistics_empty['insert'][key]
    N_SENT = len(out_normal) + len(out_empty)
    ACC_UTT = utt / N_SENT
    res = [ERR, SUB, DEL, INS, N_WORD, ACC_UTT, N_SENT]

    _format_output(res, alignments, statistics_normal, metric_type, output_detail, path_output)


def _analyse_normal(ref_normal, hyp_normal, out_normal, key_normal, metric_type):
    utt_normal = 0
    alignments_normal = []
    statistics_normal = {'substitute' : {}, 'delete' : {}, 'insert' : {}}

    for i, alignment in enumerate(out_normal):
        err, n_hit, n_sub, n_del, n_ins = 0, 0, 0, 0, 0
        ref_align, hyp_align = "", ""
        sub_align, del_align, ins_align = "", "", ""
        for j, chunk in enumerate(alignment):
            if (metric_type == "wer" and (ref_align != "" or hyp_align != "")):
                ref_align += " "
                hyp_align += " "
            if chunk.type == 'equal':
                n_hit += chunk.ref_end_idx - chunk.ref_start_idx
                ref_align += _extract_string(ref_normal[i], chunk.ref_start_idx, chunk.ref_end_idx, metric_type)
                hyp_align += _extract_string(hyp_normal[i], chunk.hyp_start_idx, chunk.hyp_end_idx, metric_type)

            elif chunk.type == 'substitute':
                err += 1
                n_sub += chunk.ref_end_idx - chunk.ref_start_idx

                ref_sub = _extract_string(ref_normal[i], chunk.ref_start_idx, chunk.ref_end_idx, metric_type)
                hyp_sub = _extract_string(hyp_normal[i], chunk.hyp_start_idx, chunk.hyp_end_idx, metric_type)

                ref_align += ref_sub
                hyp_align += hyp_sub

                key_sub = "(" + ref_sub + ") --> (" + hyp_sub + ")"

                sub_align += key_sub + "\t"

                if key_sub not in statistics_normal['substitute'].keys():
                    statistics_normal['substitute'][key_sub] = 1
                else:
                    statistics_normal['substitute'][key_sub] += 1

            elif chunk.type == 'delete':
                err += 1
                n_del += chunk.ref_end_idx - chunk.ref_start_idx

                ref_del = _extract_string(ref_normal[i], chunk.ref_start_idx, chunk.ref_end_idx, metric_type)
                hyp_del = "*"

                ref_align += ref_del
                hyp_align += hyp_del

                key_del = ref_del

                del_align += key_del + "\t"

                if key_del not in statistics_normal['delete'].keys():
                    statistics_normal['delete'][key_del] = 1
                else:
                    statistics_normal['delete'][key_del] += 1

            elif chunk.type == 'insert':
                err += 1
                n_ins += chunk.hyp_end_idx - chunk.hyp_start_idx

                ref_ins = "*"
                hyp_ins = _extract_string(hyp_normal[i], chunk.hyp_start_idx, chunk.hyp_end_idx, metric_type)

                ref_align += ref_ins
                hyp_align += hyp_ins

                key_ins = hyp_ins

                ins_align += key_ins + "\t"

                if key_ins not in statistics_normal['insert'].keys():
                    statistics_normal['insert'][key_ins] = 1
                else:
                    statistics_normal['insert'][key_ins] += 1

            else:
                assert False

        if err == 0:
            utt_normal += 1
        alignments_normal.append((key_normal[i], ref_align, hyp_align, 
                                  sub_align, del_align, ins_align, 
                                  n_hit, n_sub, n_del, n_ins))

    return utt_normal, alignments_normal, statistics_normal


def _analyse_empty(hyp_empty, out_empty, key_empty, metric_type):
    utt_empty = 0
    alignments_empty = []
    statistics_empty = {'insert' : {}}

    for i, ins in enumerate(out_empty):
        ref_align, hyp_align = "", ""
        sub_align, del_align, ins_align = "", "", ""

        if ins == 0:
            utt_empty += 1
        else:
            ref_ins = "*"
            hyp_ins = _extract_string(hyp_empty[i], 0, len(hyp_empty[i]), metric_type)

            ref_align += ref_ins
            hyp_align += hyp_ins

            key_ins = hyp_ins

            ins_align += key_ins + "\t"

            if key_ins not in statistics_empty['insert'].keys():
                statistics_empty['insert'][key_ins] = 1
            else:
                statistics_empty['insert'][key_ins] += 1
        alignments_empty.append((key_empty[i], ref_align, hyp_align, 
                                sub_align, del_align, ins_align, 
                                0, 0, 0, ins))

    return utt_empty, alignments_empty, statistics_empty


def _extract_string(s, begin, end, metric_type):
    res = ""
    if metric_type == 'wer':
        res = ' '.join(s.split(' ')[begin:end])
    elif metric_type == 'cer':
        res = s[begin:end]
    else:
        assert False
    return res


def _format_output(res, alignments, statistics, metric_type, output_detail, path_output):
    with open(path_output, "w", encoding="utf-8") as f_out:
        if output_detail == True:
            f_out.write("-"*100 + "\n")
            for i, sample in enumerate(alignments):
                key, ref, hyp = sample[0:3]
                sub_align, del_align, ins_align = sample[3:6]
                n_hit, n_sub, n_del, n_ins = sample[6:]

                f_out.write("KEY: " + key + "\n")
                f_out.write("REF: " + ref + "\n")
                f_out.write("HYP: " + hyp + "\n")
                f_out.write("CNT: " + "H(" + str(n_hit) + ") " + \
                                      "S(" + str(n_sub) + ") " + \
                                      "D(" + str(n_del) + ") " + \
                                      "I(" + str(n_ins) + ")\n")
                f_out.write("SUB: " + sub_align + "\n")
                f_out.write("DEL: " + del_align + "\n")
                f_out.write("INS: " + ins_align + "\n\n")
            f_out.write("-"*100 + "\n")

            f_out.write("-"*100 + "\n")
            lst_sub = list(sorted(statistics['substitute'].items(), key = lambda x : x[1], reverse=True))
            lst_del = list(sorted(statistics['delete'].items(), key = lambda x : x[1], reverse=True))
            lst_ins = list(sorted(statistics['insert'].items(), key = lambda x : x[1], reverse=True))
            f_out.write("\n替换错误统计: \n")
            for x in lst_sub:
                f_out.write("\t" + x[0] + "(" + str(x[1]) + ")" + "\n")
            f_out.write("\n删除错误统计: \n")
            for x in lst_del:
                f_out.write("\t" + x[0] + "(" + str(x[1]) + ")" + "\n")
            f_out.write("\n插入错误统计: \n")
            for x in lst_ins:
                f_out.write("\t" + x[0] + "(" + str(x[1]) + ")" + "\n")
            f_out.write("-"*100 + "\n")

        f_out.write("-"*100 + "\n")
        f_out.write(metric_type.upper() + ": " + str(round(res[0] * 100.0, 2)) + '%\n')
        f_out.write("WORDS: " + str(res[4]) + "\t")
        f_out.write("SUB: " + str(round(res[1] * 100.0, 2)) + "%\t")
        f_out.write("DEL: " + str(round(res[2] * 100.0, 2)) + "%\t")
        f_out.write("INS: " + str(round(res[3] * 100.0, 2)) + "%\n")
        f_out.write("ACC_UTT: " + str(round(res[5] * 100.0, 2)) + '%\t')
        f_out.write("SENTS: " + str(res[6]) + '\n')
        f_out.write("-"*100 + "\n")
    
    print (metric_type + " calculation done")
    print ("saved to " + path_output)


if __name__ == '__main__':

    '''
    # example of function cal_wer_from_list
    ref = ["今 天 天 气", "hello 我 ok 的", ""]
    hyp = ["今 天 天", "halo 我 ok 的 呀", "噪 声"]
    key = ["000", "001", "002"]
    path_output = "./example.wer"
    cal_wer(ref, hyp, key, "wer", True, path_output)

    ref = ["今天天气", "hello我ok的", ""]
    hyp = ["今天天", "halo我ok的呀", "噪声"]
    key = ["000", "001", "002"]
    path_output = "./example.cer"
    cal_wer_from_list(ref, hyp, key, "cer", True, path_output)
    '''

InspireMusic–阿里通义开源音乐生成框架

InspireMusic是由通义实验室开源的音乐生成技术,旨在打造一款集音乐生成、歌曲生成、音频生成能力为一体的开源AIGC工具包。

为研究者和开发者提供音乐/歌曲/音频生成模型的训练和调优工具及模型,方便优化生成效果;同时为音乐爱好者提供一个易于使用的文本生成音乐/歌曲/音频创作工具,可通过文字描述或音频提示来控制生成内容。

目前,InspireMusic已开源了音乐生成的训练和推理代码,支持通过简单的文字描述或音频提示,快速生成多种风格的音乐作品。

InspireMusic的文生音乐创作模式涵盖了多种曲风、情感表达和复杂的音乐结构控制,提供了极大的创作自由度和灵活性。未来计划进一步开放歌唱生成和音频生成的基础模型,欢迎研究者、开发者及用户积极参与体验和研发。该开源工具包为社区开发者提供了丰富的技术资源,支持从学术研究到产品开发的广泛应用。

🎶 主要特点

  • 统一的音频生成框架:基于音频大模型技术,InspireMusic支持音乐、歌曲及音频的生成,为用户提供多样化选择;
  • 灵活可控生成:基于文本提示和音乐特征描述,用户可精准控制生成音乐的风格和结构;
  • 简单易用:简便的模型微调和推理工具,为用户提供高效的训练与调优工具。

🌟代码仓库

核心模型

InspireMusic由音频tokenizer、自回归Transformer模型、基于常微分方程的扩散模型即Conditional Flow Matching (CFM)模型、Vocoder所组成,可支持文本生成音乐、音乐续写等任务。通过具有高压缩比的单码本WavTokenizer将输入的连续音频特征转换成离散音频token,然后利用基于Qwen模型初始化的自回归Transformer模型预测音频token,再由CFM扩散模型重建音频的潜层特征,最终通过Vocoder输出高质量的音频波形。两种推理模式的设计:fast模型和高音质模型,为不同需求的用户提供了灵活的选择。

工具包安装使用指南

第一步:下载代码库

git clone --recursive https://github.com/FunAudioLLM/InspireMusic.git
# If you failed to clone submodule due to network failures, please run the following command until success
cd InspireMusic
git submodule update --init --recursive

第二步:安装代码库

conda create -n inspiremusic python=3.8
conda activate inspiremusic
cd InspireMusic
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platforms.
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
# install flash attention to speedup training, support version 2.6.3
pip install flash-attn --no-build-isolation

第三步:下载模型

InspireMusic-Base模型(https://www.modelscope.cn/iic/InspireMusic)
# git模型下载,请确保已安装git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/InspireMusic.git pretrained_models/InspireMusic-Base

第四步:基本用法说明快速开始

cd InspireMusic/examples/music_generation/
bash run.sh

训练LLM和flow matching模型样例脚本。

torchrun --nnodes=1 --nproc_per_node=8 \
    --rdzv_id=1024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
    inspiremusic/bin/train.py \
    --train_engine "torch_ddp" \
    --config conf/inspiremusic.yaml \
    --train_data data/train.data.list \
    --cv_data data/dev.data.list \
    --model llm \
    --model_dir `pwd`/exp/music_generation/llm/ \
    --tensorboard_dir `pwd`/tensorboard/music_generation/llm/ \
    --ddp.dist_backend "nccl" \
    --num_workers 8 \
    --prefetch 100 \
    --pin_memory \
    --deepspeed_config ./conf/ds_stage2.json \
    --deepspeed.save_states model+optimizer \
    --fp16

torchrun --nnodes=1 --nproc_per_node=8 \
    --rdzv_id=1024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
    inspiremusic/bin/train.py \
    --train_engine "torch_ddp" \
    --config conf/inspiremusic.yaml \
    --train_data data/train.data.list \
    --cv_data data/dev.data.list \
    --model flow \
    --model_dir `pwd`/exp/music_generation/flow/ \
    --tensorboard_dir `pwd`/tensorboard/music_generation/flow/ \
    --ddp.dist_backend "nccl" \
    --num_workers 8 \
    --prefetch 100 \
    --pin_memory \
    --deepspeed_config ./conf/ds_stage2.json \
    --deepspeed.save_states model+optimizer

推理脚本

cd InspireMusic/examples/music_generation/
bash infer.sh

带有CFM的推理模式

pretrained_model_dir = "pretrained_models/InspireMusic/"
for task in 'text-to-music' 'continuation'; do
  python inspiremusic/bin/inference.py --task $task \
      --gpu 0 \
      --config conf/inspiremusic.yaml \
      --prompt_data data/test/parquet/data.list \
      --flow_model $pretrained_model_dir/flow.pt \
      --llm_model $pretrained_model_dir/llm.pt \
      --music_tokenizer $pretrained_model_dir/music_tokenizer \
      --wavtokenizer $pretrained_model_dir/wavtokenizer \
      --result_dir `pwd`/exp/inspiremusic/${task}_test \
      --chorus verse \
      --min_generate_audio_seconds 8 \
      --max_generate_audio_seconds 30 
done

不带CFM的fast推理模式

pretrained_model_dir = "pretrained_models/InspireMusic/"
for task in 'text-to-music' 'continuation'; do
  python inspiremusic/bin/inference.py --task $task \
      --gpu 0 \
      --config conf/inspiremusic.yaml \
      --prompt_data data/test/parquet/data.list \
      --flow_model $pretrained_model_dir/flow.pt \
      --llm_model $pretrained_model_dir/llm.pt \
      --music_tokenizer $pretrained_model_dir/music_tokenizer \
      --wavtokenizer $pretrained_model_dir/wavtokenizer \
      --result_dir `pwd`/exp/inspiremusic/${task}_test \
      --chorus verse \
      --fast \
      --min_generate_audio_seconds 8 \
      --max_generate_audio_seconds 30 
done

WeTextProcessing-文本[逆]正则化

Github:https://github.com/wenet-e2e/WeTextProcessing

摘自:https://mp.weixin.qq.com/s/q_11lck78qcjylHCi6wVsQ

Funasr仓库:

Motivation

文本正则化(Text Normalization,TN)和反正则化(Inverse Text Normalization,ITN)是构建一个完整的语音交互系统不可或缺的部分。前者广泛用于语音合成系统的前端处理,而后者则在语音识别系统的识别文本上屏显示时影响着字幕的观感体验。

当前学术界中被广泛研究的 TN / ITN 系统主要有三种类型:

  • 基于语法规则的 WFST [1]:这种系统由大量特定于语言的语法组成,优点是准确可控,可以快速修 bug ,缺点是对于容易产生歧义的文本不够鲁棒。
  • 基于神经网络的端到端模型 [2]:构建这种模型时,挑战从撰写更精确的语法规则变成了标注和收集覆盖范围更广的数据。端到端模型的一个主要缺点是会产生无法恢复的错误,这时经系统转换后的文字可能在语法上是合理的,但却与原始文本的语义大相径庭。此外,对于 badcase 的修复也不如规则的方式快捷。
  • 同时使用规则语法和神经网络的混合系统 [3]:在混合框架中,只有当系统没有找到匹配的语法规则才会转用神经网络。这种方式比较好地权衡了规则和 NN 的优劣,但是对计算资源提出了更高的要求。

鉴于以上三种系统的优劣,WeTextProcessing 选择实现基于语法规则的WFST 方案。在全球范围内的开源TN/ITN 项目中,目前受众最广泛的是谷歌公司推出的C++ 框架 Sparrowhawk [4] 。该框架的不足之处是它仅仅是一个规则执行引擎,谷歌公司并没有开源相关语言的语法规则。此外,Sparrowhawk 的实现依赖了许多第三方开源库(包括 OpenFst 、Thrax 、re2 、protobuf ),导致整体框架不够简便、轻量化。另一个较为成熟的项目是英伟达公司开源的 nemo_text_processing [5],该项目依旧使用Sparrowhawk 作为生产环境下的部署工具。与谷歌不同的是,该项目还开源了诸如英语、德语、俄语等多种语言的规则语法。在中文 TN / ITN 规则领域,Jiayu 等第三方个人开发者曾开源出一套定制化的中文 TN / ITN 规则库 chinese_text_normalization [6]

站在这些优秀开源项目的肩膀上,WeTextProcessing秉承 简单易用 和Production First & Production Ready 的原则,为中文专门设计和实现一款开源易用的 TN / ITN 工具,它不仅仅包含了包含一套完整的中文 TN / ITN 规则语法,同时也提供了一个可以一键 pip install 使用的 py工具包以及比Sparrowhawk 依赖项更少(生产环境下仅依赖 OpenFst )的整体更轻量化的 C++ 规则处理引擎。

快速上手

一键install,六行代码搞定文本处理!

# install
pip install WeTextProcessing

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer()
>>> normalizer.normalize("2.5平方电线")

# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer()
>>> invnormalizer.normalize("二点五平方电线")

技术细节

TN 和 ITN 的流程都是包含三个部分:Tagger, Reorder 和 Verbalizer。Tagger 负责对输入的文本进行解析,得到结构化的信息。Reorder 负责对结构化信息进行顺序的调整。最终 Verbalizer 负责将重排序之后的结构化信息拼接起来。

TN 流程

ITN 流程

语法规则设计

WeTextProcessing 使用 pynini [7] 来编写和编译规则语法,规则语法可以将一个字符串转换为另一个字符串。规则语法通常可以表示为一个 WFST,pynini 的底层使用了 OpenFst 来实现 WFST 相关的功能。使用 pynini 编写的规则语法示例如下图所示:

  • digits = zero | digit 的 | 操作符表示 WFST 理论中的 union 操作;
  • cross(‘十’, ‘1’) 表示 WFST 理论中弧上的输入是“十”,输出是“1”,WFST 从一个状态转到另一个状态时若经过该弧则说明系统匹配到了“十”并成功将其转换为了“1”;
  • delete(‘十’) 表示弧上的输入是“十”,输出是空,即经过该弧时会删除“十”;
  • digit + delete(‘十’) 中 + 表示WFST理论中的 concat 操作,它将两个fst连起来;
  • accep(‘兆’) 表示弧的输入和输出都是“兆”,此时 WFST 相当于一个 FSA;
  • addzero**2addzero**3 分别表示将 addzero 重复两次和三次;
  • digits.ques 和 digits.plus 则分别表示将 digits 重复零到一次 和 重复一到无穷次

此外还有一些语法特性,比如下图中:

  • add_weight(Char().tagger, 100) 表示为 Char().tagger 这条路径赋予权重(路径长度)为 100。当有多条路径都可以匹配当前输入时,我们取最短路径作为终选结果。例如“一点零五分”最终会被 ITN 成 “1:05” 而不是 “1.05分”。
  • insert(‘ ‘) 表示弧上的输入和输出分别是“”和“ ”,即经过该弧时会强制插入一个空格。
  • processor @ tagger.optimize() 中 @ 表示将两个 fst 进行 compose 操作,optimize() 表示对 tagger 进行 epsilon-removal,determinization 以及 minimization [8]
  • ‘[EOS]’ 表示正则表达式中匹配到的 string 的结尾,同理这里没有列出的 ‘[BOS]’ 则表示开头 [9]

更多详尽的说明请参考pynini 的相关文档 [7]。对于本文所构建的所有WFST,我们采用 OpenFst 中默认的热带半环作为其类型,做出这个选择的原因是此类型对求网格图中的最短路径的操作有效率优势,其路径权重的计算仅需对沿路径的所有弧的权重进行简单求和。

进阶用法

如何快速修 badcase

当遇到 badcase 的时候,我们首先需要确定 badcase 属于什么类型,日期?时间?还是分数等等?是没有转换,还是转换成了其他类型。然后再去相对应的 rules 中进行修复,可能需要改代码,也可能需要改 tsv 文件。

比如若 ITN 系统将 “三心二意” 错误转成了 “3心2意” 则有两种解决方案:

  1. 在 whitelist.tsv 添加相关的映射放弃相关词汇的转换
  2. 将enable_standalone_number设置为False,此时系统对不带单位的数字不会进行转换

值得注意的是,WeTextProcessing 大多数失败案例是由于上下文歧义或特殊案例造成的长尾问题。例如,“三点五分” 可以是时间 “3:05” 也可以是量词 “3.5 分” 表示运动员得分。编写语法时若考虑更多的上下文可以一定程度上缓解这种情况,例如,如果 “三点五分” 前面有单词 “得到” ,则将其检测为运动员得分。当然,这种打补丁的方式并不能适用于所有情况。出于这个原因,如果想要设计一个能够覆盖 100% 场景的系统,语法的数量将不可避免呈指数级增长。其他常见的失败案例是由于定义不完整。例如,如果没有预定义 “千瓦时” 到 “kwh” 的度量缩写转换,系统将无法转换 “两百千瓦时” 为 “200kwh” 。这个问题相对来说容易解决,仅需在已有的量词类中添加所需的转换规则。

生产环境部署

对于想要自己对规则进行DIY的用户,可以通过以下方式获得自己的规则文件并部署到不同的环境中。

git clone https://github.com/wenet-e2e/WeTextProcessing.git
cd WeTextProcessing
# `overwrite_cache` will rebuild all rules according to
#   your modifications on tn/chinese/rules/xx.py (itn/chinese/rules/xx.py).
#   After rebuild, you can find new far files at `$PWD/tn` and `$PWD/itn`.
python normalize.py --text "2.5平方电线" --overwrite_cache
python inverse_normalize.py --text "二点五平方电线" --overwrite_cache

在已经pip安装好的工具包中使用自己的规则:

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn")
>>> normalizer.normalize("2.5平方电线")# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn")
>>> invnormalizer.normalize("二点五平方电线")

在C++中使用自己的规则:

cmake -B build -S runtime -DCMAKE_BUILD_TYPE=Releasecmake --build build
# tn usage
./build/bin/processor_main --far PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn/zh_tn_normalizer.far --text "2.5平方电线"
# itn usage
./build/bin/processor_main --far PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn/zh_itn_normalizer.far --text "二点五平方电线"

总结和展望

未来,WeTextProcessing 的工作将聚焦在对 Corner Case 的规则修补:相比于规则撰写,设计一套合理的测试集是一件更为困难的事情,这是因为实际生产过程中总会遇到数不清的 corner case 。WeTextProcessing 中虽然提供了一个简单的单元测试和示例测试,但其覆盖场景仍未能达到 100% 。在未来,WeTextProcessing 的重点方向之一就是越来越多地投入部署到真实的线上环境中,以身试错,case by case 分析当前规则存在的可能漏洞并加以弥补。

参考资料

[1] Peter Ebden and Richard Sproat, “The kestrel TTS text normalization system,” Nat. Lang. Eng., vol. 21, no. 3, pp. 333–353, 2015.

[2] Courtney Mansfield, Ming Sun, Yuzong Liu, Ankur Gandhe, and Björn Hoffmeister, “Neural text normalization with subword units,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 2 (Industry Papers), Anastassia Loukina, Michelle Morales, and Rohit Kumar, Eds. 2019, pp. 190–196, Association for Computational Linguistics.

[3] Richard Sproat and Navdeep Jaitly, “An RNN model of text normalization,” in Interspeech 2017, 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, August 20-24, 2017, Francisco Lacerda, Ed. 2017, pp. 754–758, ISCA.

[4] Peter Ebden and Richar Sproat, “Sparrowhawk,” 2022, https://github.com/google/sparrowhawk.

[5] Yang Zhang, “nemo_text_processing,” 2022, https://github.com/NVIDIA/NeMo/tree/main/nemo_text_processing.

[6] Jiayu Du, “chinese_text_normalization,” 2022, https://github.com/speechio/chinese_text_normalization.

[7] K. Gorman. 2016. Pynini: A Python library for weighted finite-state grammar compilation. In Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 75-80.

[8] https://www.opengrm.org/twiki/bin/view/GRM/PyniniOptimizeDoc

[9] https://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour

FireRedASR -小红书语音识别大模型

小红书 FireRed 团队正式发布并开源了基于大模型的语音识别模型 ——FireRedASR,在语音识别领域带来新突破。在业界广泛采用的中文普通话公开测试集上,FireRedASR 凭借卓越的性能取得了新 SOTA!FireRedASR 在字错误率(CER)这一核心技术指标上,对比此前的 SOTA Seed-ASR,错误率相对降低 8.4%,充分体现了团队在语音识别技术领域的创新能力与技术突破。

FireredAsr,旨在满足各种应用程序中出色的性能和最佳效率的各种要求。 fireredasr包括两个变体:

FireRedASR-LLM

采用Encoder-Adapter-LLM,结合了文本预训练 LLM 的能力,为极致的 ASR 准确率而生,适用于对准确率要求极高的应用场景。在公共普通话基准上,fireredasr-LLM (8.3b参数)达到3.05%的平均字符错误率(CER),超过了3.33%的最新SOTA,相对CER(CERR)8.4%。它显示出优于工业级基线的卓越概括能力,在多源普通话ASR方案(例如视频,现场和智能助理)中,达到24%-40%的CERR。

FireRedASR-AED

基于经典的 Attention-based Encoder-Decoder 架构,FireRedASR-AED 通过扩展参数至 1.1B,成功平衡了 ASR 语音识别的高准确率与推理效率。适用于资源受限的应用程序。

主要贡献

  • High-Accuracy Models with Efficiency: ASR识别准确率优于Seed-ASR[字节跳动],模型在保持效率的同时达到卓越精度的能力。
  • Robust Real-World Performance: 在各种实用的场景中,包括简短的视频,直播,字幕生成,语音输入和智能助手,我们的模型表现出了出色的功能,与相比的相对减少(CERR)相比实现了24%-40%流行的开源基线和领先的商业解决方案。
  • 多功能识别能力:支持方言/中文/英文/歌曲识别。而且在歌词识别中表现出色

模型结构:

FireRedASR-AED是基于注意的编码器-解码器 ASR模型。训练数据:包括大约70,000小时的音频数据,主要是高质量的普通话语音。与Whisper中使用的弱标记数据集不同,我们的大多数数据都是由专业注释者手动转录的,从而确保了高转录精度和可靠性。该数据集还包含大约11,000小时的英语语音数据,以增强英语ASR功能。

Input Features: 输入25ms窗口的80-dimensional  log Mel filterbank (Fbank),10ms frame shifts,然后是全局均值和方差归一化。

Encoder Structure:编码器由两个主要组件组成:一个下采样模块和Conformer  blocks堆叠。

Decoder Structure:解码器遵循Transformer 体系结构。

Tokenization:BPE编码英文文本, 1,000 English BPE tokens, 6,827 Chinese characters, and 5 special tokens.

FireRedASR-LLM: Encoder-Adapter-LLM 架构。

Input Features and Encoder: 训练数据和处理、encoder跟FireredAsr-AED相同。

Adapter Structure:一个简单但有效的线性RELU线性网络组成,该网络投射了编码器的输出维度,以匹配输入LLM。在适配器的开头合并了一个额外的框架剪接操作。此操作进一步将时间分辨率从40ms降低到每个帧的80ms,从而降低了序列长度并提高了计算效率LLM。

LLM初始化和处理:LLM用QWEN2-7B-INSTRUCT的预训练的重量初始化。训练数据格式:(prompt, speech, transcript)

Training Strategy编码器和适配器是完全训练的,LLM采用lora微调,保证LLM的文本能力。此策略可确保编码器和适配器经过充分训练,以将语音特征映射到LLM的语义空间中,同时保留其预训练能力。训练目标基于交叉熵损失,损失仅在输入的转录部分上计算,忽略提示和语音嵌入。

Evaluation

缩放定律的观察

LLMs 方面的最新研究表明,模型性能通常会随着模型尺寸的增加而提高,这称为缩放定律 。如表3所示,我们研究了具有不同模型大小的模型的缩放行为。对于 FireRedASR-AED,我们将模型大小逐步从 140M、413M、732M 扩展到 1.1B 参数。随着模型尺寸的增加,性能持续提高,从 XS 扩展到 S、从 S 扩展到 M 以及从 M 扩展到 L 配置时分别实现 6.1%、5.3% 和 5.6% 的 CERR。对于 FireRedASR-LLM,专注于扩展编码器,同时保持 LLM 主干不变。编码器大小从 86M 增加到 710M 参数,适配器参数的变化很小(17M 到 22M)。这表现出相似的扩展模式并带来一致的性能改进,从 XS(3.29%)到 L(3.05%)配置的总体 CERR 为 7.3%。这些结果证明了我们的扩展策略的有效性,并表明通过更大的模型容量可以进一步改进。

下图是 FireRedASR 和其他 ASR 大模型的对比,在业界常用的中文普通话公开测试集上,FireRedASR-LLM(8.3B 参数量)取得了最优 CER 3.05%、成为新 SOTA!FireRedASR-AED (1.1B 参数量)紧随其后取得 3.18%,两者均比 Seed-ASR(12+B 参数量)的 3.33% 低、并且参数量更小。FireRedASR 也比 Qwen-Audio、SenseVoice、Whisper、Paraformer 取得了更优的 CER。

FireRedASR 不仅在公开测试集上表现优异,在多种日常场景下,也展现了卓越的语音识别效果。
如下图所示,在由短视频、直播、语音输入和智能助手等多种来源组成的 Speech 测试集上,与业内领先的 ASR 服务提供商(ProviderA)和 Paraformer-Large 相比, FireRedASR-LLM 的 CER 相对降低 23.7%~40.0%,优势十分明显。
值得一提的是,在需要歌词识别能力的场景中,FireRedASR-LLM 也表现出极强的适配能力,CER 实现了 50.2%~66.7% 的相对降低,这一成果进一步拓宽了 FireRedASR 的应用范围,使其不仅能胜任传统语音识别需求,还能在创新性的多媒体场景中大放异彩。

值得一提的是,FireRedASR 在中文方言和英语场景中同样表现不俗。在 KeSpeech(中文方言)和 LibriSpeech(英语)测试集上,FireRedASR 的 CER 显著优于此前的开源 SOTA 模型,使其在支持好普通话 ASR 的前提下,在中文方言和英语上也足够通用,进一步凸显了其鲁棒的语言适配能力。

Discussion:

FireredAsr模型优于竞争模型的原因:

高质量和多样化的训练数据:语料库主要由从现实世界情景中收集的专业转录音频组成,该音频比在受控环境中提供的传统阅读式录音相比,它提供的训练信号明显更高。该数据集包括声音条件,扬声器,重音和内容域的广泛差异,总计数万小时。这种多样性和规模使我们的模型能够学习强大的语音表征和语言模式。

实证研究表明,一千小时的高质量,人工标注的数据比一万小时的弱标记数据(例如,来自视频标题,OCR结果或其他ASR模型的输出)更好的结果,这解释了我们比Whisper的优势 。此外,在我们的语料库中包含唱歌数据为处理音乐内容时的基线模型的显着改进做出了贡献。

优化的训练策略:将FireredAsr-A的扩展为140m到1.1b参数时,我们将正则化和学习率确定为影响模型收敛的关键因素。我们制定了一种渐进式正则化训练策略:最初没有正则化技术以实现快速收敛,然后逐渐引入更强的正则化,因为出现了过度拟合的趋势。此外,较大的模型需要降低学习率,这对于调整此参数的最佳性能至关重要。

高效的ASR框架

总结:提出了fireredasr-LLM和FireredAsr-AED,两种针对普通话优化的高性能ASR模型。通过全面的评估,我们证明了他们的体系结构,培训策略和高质量的数据集可以在保持计算效率的同时达到最先进的性能。

DeepSeek-R1 技术报告

摘自:https://zhuanlan.zhihu.com/p/19744278380

Github: https://github.com/deepseek-ai/DeepSeek-R1

DeepSeek-R1:通过强化学习提升LLM的推理能力

R1训练流程:

•冷启动 •基于推理的强化学习 •Rejection Sampling •SFT •全场景强化学习

DeepSeek-R1-Zero 采用大规模强化学习(RL)进行训练,无需预先进行监督微调(SFT),表现出显著的推理能力。在强化学习过程中,DeepSeek-R1-Zero 展现出多种卓越且新颖的推理特性。但该模型仍面临可读性不足语言混杂等问题。

为解决这些问题并进一步增强推理性能,研究团队开发了 DeepSeek-R1,该模型在进行强化学习前引入了多阶段训练和冷启动数据。

DeepSeek-R1 在推理任务上实现了与 OpenAI-o1-1217 相当的性能水平

为促进学术研究发展,研究团队开源了 DeepSeek-R1-Zero、DeepSeek-R1,以及基于 Qwen 和 Llama 架构从 DeepSeek-R1 知识蒸馏获得的六个稠密模型(1.5B、7B、8B、14B、32B、70B)。

引言

近年来,LLM技术发展迅速,不断缩小与AGI的差距。后训练技术已成为完整训练流程中的关键环节,证实能够提升推理任务准确率,实现社会价值观对齐,适应用户偏好,同时相较于预训练所需计算资源较少。在推理能力方面,OpenAI的o1系列模型首次通过延长Chain-of-Thought(CoT)推理过程引入了推理时扩展机制,在数学、编程和科学推理等多个推理任务中取得显著进展。

然而,如何实现有效的测试时扩展仍是学术界面临的重要课题。前期研究探索了多种方法,包括过程型奖励模型、强化学习以及蒙特卡洛树搜索和束搜索等算法。但这些方法均未能达到与OpenAI的o1系列模型相当的通用推理水平。

本研究采用纯RL方法提升语言模型的推理能力。研究旨在探索LLM在无监督数据条件下通过纯RL过程实现自我进化的推理能力潜力。

具体而言,研究选用DeepSeek-V3-Base作为基础模型,采用群组相对策略优化(GRPO)作为RL框架提升模型推理性能。在训练过程中,DeepSeek-R1-Zero自然形成了多种高效且创新的推理特征。经过数千轮RL迭代,DeepSeek-R1-Zero在推理基准测试中展现出优异性能。例如,在AIME 2024测试中,pass@1得分从15.6%提升至71.0%,采用majority voting机制后,得分进一步提高到86.7%,达到OpenAI-o1-0912的性能水平。

然而,DeepSeek-R1-Zero仍面临可读性不足、语言混杂等挑战。

为解决这些问题并进一步提升推理性能,研究团队开发了DeepSeek-R1模型,该模型整合了初始训练数据和多阶段训练流程。具体实施步骤包括:首先收集数千条初始训练数据用于DeepSeek-V3-Base模型的微调;随后进行推理强化学习训练;在RL过程接近收敛时,通过拒绝采样(rejection sampling)方法从RL检查点生成新的SFT数据,并结合DeepSeek-V3在写作、事实QA和自我认知等领域的监督数据重新训练DeepSeek-V3-Base模型;最后,使用新数据完成微调后的检查点进行额外的RL训练,综合考虑各类场景的提示词。

经过上述步骤,最终获得的DeepSeek-R1模型达到了与OpenAI-o1-1217相当的性能水平。

研究进一步探索了从DeepSeek-R1到较小dense模型的知识蒸馏。以Qwen2.5 32B为基础模型,直接从DeepSeek-R1进行知识蒸馏的效果优于直接应用RL训练,表明大型基础模型所发现的推理模式对提升推理能力具有关键作用。研究团队已开源蒸馏后的Qwen和Llama系列模型。

值得注意的是,14B蒸馏模型的性能显著超越了当前最先进的开源模型QwQ-32B-Preview,而32B和70B蒸馏模型则在稠密模型推理基准测试中创造了新的记录

主要贡献

后训练:基础模型的大规模强化学习应用

  • 本研究直接将RL应用于基础模型,无需将SFT作为前置步骤。这种方法使模型能够通过CoT探索复杂问题的解决方案,最终开发出DeepSeek-R1-Zero模型。DeepSeek-R1-Zero具备自我验证、反思和生成长CoT等能力,为学术界提供了重要研究成果。这是首个验证LLM推理能力可纯粹通过RL提升而无需SFT的开放研究,为该领域未来发展奠定基础
  • 研究提出了DeepSeek-R1的开发流程,包含两个RL阶段用于优化推理模式和人类偏好对齐,以及两个SFT阶段用于构建模型的推理和非推理基础能力。该流程将有助于行业开发更高性能的模型。

知识蒸馏:小型模型的性能提升

  • 研究表明大型模型的推理模式可通过知识蒸馏迁移至小型模型,其效果优于直接对小型模型进行RL训练。开源的DeepSeek-R1及其API将支持学术界开发更优秀的小型模型
  • 利用DeepSeek-R1生成的推理数据,研究团队对学术界广泛使用的多个稠密模型进行了微调。评估结果显示,经过知识蒸馏的小型dense模型在基准测试中表现优异。DeepSeek-R1-Distill-Qwen-7B在AIME 2024上达到55.5%的性能,超越QwQ-32B-Preview。DeepSeek-R1-Distill-Qwen-32B在AIME 2024、MATH-500和LiveCodeBench上分别达到72.6%、94.3%和57.2%的成绩,显著优于现有开源模型,达到与o1-mini相当的水平。研究团队已向学术界开源基于Qwen2.5和Llama3系列的1.5B、7B、8B、14B、32B和70B蒸馏检查点

研究方法

概述

传统研究主要依赖大规模监督数据提升模型性能。本研究证实,即使在无需监督微调(SFT)作为初始训练的情况下,通过大规模强化学习(RL)也能显著提升推理能力。此外,引入适量初始训练数据可进一步优化性能。后续章节将介绍:(1)DeepSeek-R1-Zero:直接对基础模型应用RL,无需任何SFT数据;(2)DeepSeek-R1基于经数千个长CoT样例微调的检查点进行RL训练;(3)将DeepSeek-R1的推理能力通过知识蒸馏迁移至小型稠密模型

DeepSeek-R1-Zero:基础模型的强化学习应用

前期相关研究表明强化学习在推理任务中具有显著效果。然而,这些研究高度依赖耗时的监督数据采集。本节探索LLM在无监督数据条件下通过纯强化学习实现推理能力自我进化的潜力。研究首先概述强化学习算法,随后展示实验结果,以期为学术界提供研究参考。

强化学习算法

群组相对策略优化(GRPO): 为优化RL训练成本,研究采用GRPO算法,摒弃了通常与策略模型规模相当的评论家模型,转而通过群组评分估计基线。具体而言,对每个问题 q ,GRPO从旧策略 πθold 采样输出组{ o1,o2,…,oG },通过最大化以下目标优化策略模型 πθ :

其中 ε 和 β 是超参数, Ai 是优势函数,使用组内每个输出对应的奖励组{ r1,r2,…,rG }计算得到:

奖励建模

奖励机制作为训练信号来源,决定RL的优化方向。DeepSeek-R1-Zero采用基于规则的双重奖励系统

  • 准确性奖励:评估响应正确性。如对确定性数学问题,要求模型以特定格式(如方框内)提供最终答案,实现基于规则的可靠验证。对LeetCode问题,则通过编译器基于预设测试用例生成反馈。
  • 格式奖励:要求模型将推理过程置于指定标签对内。研究未采用结果或过程神经奖励模型,原因在于神经奖励模型可能在大规模RL过程中产生奖励欺骗问题,且重训奖励模型需额外资源,增加训练流程复杂度。

训练模板

DeepSeek-R1-Zero的训练始于简洁指令模板的设计。

如表1所示,模板要求模型首先生成推理过程,随后给出最终答案。研究刻意将约束限定于结构格式,避免引入内容偏见(如强制反思推理或特定问题解决策略),以准确观测模型在RL过程中的自然演化。

DeepSeek-R1-Zero的性能分析、演化过程及关键突破

性能分析 图2记录了DeepSeek-R1-Zero在RL训练过程中AIME 2024基准测试的性能变化轨迹。

图2 | DeepSeek-R1-Zero训练过程中的AIME准确率变化。为确保评估稳定性,对每个问题采样16个响应并计算总体平均准确率。

数据显示,随着RL训练的深入,模型性能呈现稳定上升趋势。在AIME 2024测试中,平均pass@1得分从初始的15.6%显著提升至71.0%,达到OpenAI-o1-0912的性能水平,充分证实了RL算法在模型性能优化方面的有效性。

表2 | DeepSeek-R1-Zero与OpenAI o1模型在推理相关基准测试上的性能对比。

表2详细对比了DeepSeek-R1-Zero与OpenAI o1-0912模型在各类推理基准测试上的表现。结果表明,纯RL训练使DeepSeek-R1-Zero获得了出色的推理能力,无需借助监督微调数据,这证实了模型通过单一RL机制实现有效学习和泛化的能力。通过引入majority voting机制,模型性能得到进一步提升。例如,在AIME基准测试中,采用majority voting后性能从71.0%提升至86.7%,超越OpenAI-o1-0912。这种优异表现凸显了模型的基础能力和推理潜力。

演化过程分析 DeepSeek-R1-Zero的演化过程展示了RL在推理能力自主优化方面的显著效果。通过直接对基础模型实施RL训练,研究得以在无监督微调影响下观测模型进展。

图3 | 展示DeepSeek-R1-Zero在RL训练过程中训练集的平均响应长度变化,反映模型自主习得延长推理时间的能力。

如图3所示,模型的推理时长在训练过程中持续优化,这种进展源于模型的内生发展而非外部干预。DeepSeek-R1-Zero通过扩展测试计算时间,自然形成了解决复杂推理任务的能力。其计算规模从数百到数千个推理token不等,实现了深度的思维探索和优化。随着测试计算时间的延长,模型展现出复杂的行为特征,包括反思机制(重新评估先前推理步骤)和多元问题解决策略的探索。这些行为模式并非预设,而是源于模型与RL环境的交互作用,显著增强了其处理高难度任务的效率和准确性。

关键突破与局限性 研究过程中观察到模型出现重要突破,如表3所示,体现在中期版本中。

表3:记录DeepSeek-R1-Zero中期版本的重要突破,展示模型获得自主思考复核能力的过程,体现RL在模型能力提升方面的有效性。

此阶段,DeepSeek-R1-Zero习得了重新评估初始方法并延长思考时间的能力。这一进展不仅体现了模型推理能力的提升,也展示了RL在实现复杂学习成果方面的潜力。这种现象验证了RL的核心优势:通过适当的激励机制,促使模型自主发展高级问题解决策略。

然而,DeepSeek-R1-Zero仍存在若干局限性。尽管具备强大的推理能力和创新的推理行为,但在可读性和语言一致性方面仍面临挑战。为提高推理过程的可读性并促进开放社区交流,研究团队开发了DeepSeek-R1模型,该模型结合了RL和用户友好的初始训练数据。

DeepSeek-R1:基于冷启动的强化学习方法

基于DeepSeek-R1-Zero的成功实践,研究聚焦两个核心问题:

  1. 通过引入少量高质量数据作为冷启动,是否能够进一步提升推理性能或加速收敛?
  2. 如何开发既能生成清晰连贯的CoT,又具备强大通用能力的用户友好型模型?

为解决上述问题,研究团队设计了四阶段训练流程

冷启动机制

区别于DeepSeek-R1-Zero,DeepSeek-R1采用少量长CoT数据对模型进行预微调作为初始RL策略网络,以避免基础模型RL训练早期的不稳定性。数据收集采用多种方法:

  • 基于长CoT示例的少样本提示
  • 直接提示生成包含反思验证的详细答案
  • 整理DeepSeek-R1-Zero的规范化输出
  • 人工标注后处理优化

研究收集数千条冷启动数据用于DeepSeek-V3-Base的预训练。相较于DeepSeek-R1-Zero,冷启动数据具有以下优势:

  • 可读性增强:克服了DeepSeek-R1-Zero输出内容可读性差的局限。通过设计标准化输出模式,包括响应末尾的总结性内容,并筛除不符合阅读友好性要求的输出。输出采用|special_token|<reasoning_process>|special_token|<summary>格式,包含查询的推理过程和结果摘要。
  • 性能提升:基于人类认知模式优化的冷启动数据设计,展现出优于DeepSeek-R1-Zero的性能表现,验证了迭代训练对推理模型的优越性。

推理强化学习优化

完成冷启动数据预训练后,采用与DeepSeek-R1-Zero类似的大规模RL训练流程,重点提升模型在编码、数学、科学和逻辑等明确定义问题域的推理能力。在训练过程中发现Chain-of-Thought存在语言混杂现象,尤其是多语言提示场景下。为此引入语言一致性奖励机制,基于目标语言词占比计算。尽管消融实验显示该机制略微影响模型性能,但提升了人类使用体验。最终将任务准确率和语言一致性奖励合并计算总体奖励,持续RL训练直至模型在推理任务上收敛。

拒绝采样与监督微调

推理RL收敛后,利用检查点生成后续SFT数据。不同于专注推理的冷启动阶段,此阶段整合多领域数据以增强模型的写作、角色扮演等通用能力。具体实施如下:

推理数据构建 通过对RL训练检查点执行拒绝采样生成推理轨迹。扩展了评估机制,除规则型奖励外,引入基于DeepSeek-V3判断的生成式奖励模型。优化输出质量,过滤混杂语言、冗长段落和代码块。对每个提示词进行多样本采样,保留正确结果。最终获得约60万条推理训练样本。

非推理数据整合 在写作、事实QA、自我认知和翻译等领域,采用DeepSeek-V3流程和部分SFT数据。对复杂非推理任务,通过提示DeepSeek-V3生成前置CoT;对简单查询则直接响应。累计获取约20万条非推理训练样本。使用总计约80万样本数据对DeepSeek-V3-Base执行两轮微调。

全场景强化学习

优化人类偏好对齐,实施第二阶段RL训练,着重提升模型实用性、安全性和推理能力。采用多元奖励信号和多样化提示分布:

  • 推理数据:延续DeepSeek-R1-Zero方法,在数理逻辑领域应用规则型奖励
  • 通用数据:采用奖励模型捕捉复杂场景下的人类偏好
  • 实用性评估:专注于响应摘要,确保输出的实用性和相关性
  • 安全性保障:全面评估推理过程和摘要,识别并降低潜在风险

通过奖励信号和数据分布的系统整合,实现了推理能力和用户体验的均衡发展。

知识蒸馏:增强小型模型的推理能力

本研究采用DeepSeek-R1生成的80万训练样本,对Qwen和Llama等开源模型进行直接SFT微调,旨在将DeekSeek-R1的推理能力迁移至计算效率更高的小型模型。

实验结果表明,这种直接知识蒸馏方法显著提升小型模型的推理性能

研究选用的基础模型包括:Qwen2.5-Math-1.5B、Qwen2.5-Math-7B、Qwen2.5-14B、Qwen2.5-32B、Llama-3.1-8BLlama-3.3-70B-Instruct

选择Llama-3.3的原因在于其推理能力较Llama-3.1略有优势

蒸馏过程中仅采用SFT,未纳入RL阶段,尽管引入RL可能带来显著的性能提升。研究重点在于验证知识蒸馏技术的有效性,为后续学术界对RL优化的深入研究奠定基础。

实验设计与评估

研究采用多维度基准测试体系评估模型性能:

标准评估基准 8类16个评估标准如下所示:

  • 知识理解类:MMLU、MMLU-Redux、MMLU-Pro
  • 跨语言评估:C-Eval、CMMLU
  • 格式理解:IFEval
  • 长文本处理:FRAMES
  • 专业知识:GPQA Diamond
  • 事实问答:SimpleQA、C-SimpleQA
  • 编程能力评估: SWE-Bench Verified、Aider、LiveCodeBench、Codeforces
  • 数学能力测试: CNMO 2024、AIME 2024

除标准基准测试外,研究还使用LLM作为评估器评估模型在开放式生成任务上的表现。具体而言,遵循AlpacaEval 2.0Arena-Hard的原始配置,使用GPT-4-Turbo-1106作为成对比较的评估器。评估时仅输入最终摘要以避免长度偏差。对于蒸馏模型,报告其在AIME 2024、MATH-500、GPQA Diamond、Codeforces和LiveCodeBench上的代表性结果。

评估用prompt 不同的评估标准采用不同的prompt,具体如下所示:

  • 基础评估:采用simple evals框架标准prompt评估MMLU、DROP、GPQA Diamond和SimpleQA
  • 特殊处理: MMLU-Redux采用Zero-Eval prompt格式实现零样本评估,MMLU-Pro、C-Eval、CLUE-WSC将原少样本prompt改造为零样本形式
  • 编程评估: HumanEval-Mul覆盖8种主流编程语言,LiveCodeBench采用CoT格式,Codeforces基于10个Div.2竞赛题目与专家测试用例,SWE-Bench通过无代理框架验证

值得注意的是,DeepSeek-R1的输出在每个基准测试上限制为最多32,768个token。

基准模型 研究与多个强基准模型进行全面对比,包括DeepSeek-V3、Claude-Sonnet-3.5-1022、GPT-4o-0513、OpenAI-o1-miniOpenAI-o1-1217。鉴于在中国大陆访问OpenAI-o1-1217 API的限制,其性能数据来源于官方报告。对于蒸馏模型,额外与开源模型QwQ-32B-Preview进行比较。

生成配置 所有模型的最大生成长度设置为32K token。对需要采样的基准测试,采用0.6的temperature参数、0.95的top-p值,并为每个查询生成64个响应以估算pass@1。

DeepSeek-R1评估结果

表4 | DeepSeek-R1与其他代表性模型的比较。

在面向教育的知识基准测试(如MMLU、MMLU-Pro和GPQA Diamond)中,DeepSeek-R1相较于DeepSeek-V3展现出优越性能。这一进步主要归因于STEM相关问题准确率的提升,这得益于大规模RL带来的显著进步。

此外,DeepSeek-R1在依赖长文本理解的问答任务FRAMES上表现卓越,展示了其强大的文档分析能力。这凸显了推理模型在AI驱动的搜索和数据分析任务中的潜力

在事实性基准测试SimpleQA上,DeepSeek-R1的表现优于DeepSeek-V3,证明了其处理基于事实查询的能力。类似地,在该基准测试中也观察到OpenAI-o1超越GPT-4o的趋势。

然而,DeepSeek-R1在中文SimpleQA基准测试中的表现不如DeepSeek-V3,主要是由于安全性RL后倾向于拒绝回答某些查询。若不考虑安全性RL,DeepSeek-R1可以达到超过70%的准确率。

DeepSeek-R1在IF-Eval(一个用于评估模型遵循格式指令能力的基准测试)上也取得了令人瞩目的成果。这些改进可归因于在最终阶段的SFT和RL训练中引入了指令遵循数据。

此外,在AlpacaEval 2.0和ArenaHard上的出色表现表明DeepSeek-R1在写作任务和开放域问答方面具有优势。其显著优于DeepSeek-V3的表现凸显了大规模RL的泛化效益,不仅提升了推理能力,还改善了各个领域的性能。

而且DeepSeek-R1生成的摘要长度简洁,在ArenaHard上平均为689个token,在AlpacaEval 2.0上平均为2,218个字符。这表明DeepSeek-R1在基于GPT的评估中避免了引入长度偏差,进一步证实了其在多任务场景下的稳健性。

数学任务上,DeepSeek-R1展现出与OpenAI-o1-1217相当的性能,大幅超越其他模型。在LiveCodeBench和Codeforces等编码算法任务上也观察到类似趋势,其中注重推理的模型在这些基准测试中占据主导地位。

在面向工程的编码任务上,OpenAI-o1-1217在Aider上优于DeepSeek-R1,但在SWE Verified上表现相当。考虑到目前相关RL训练数据量仍然非常有限,研究团队认为DeepSeek-R1的工程性能将在下一版本中得到改善。

蒸馏模型评估

表5 | DeepSeek-R1蒸馏模型与其他可比模型在推理相关基准测试上的比较。

如表5所示,仅通过蒸馏DeepSeek-R1的输出,高效的DeepSeek-R1-7B(即DeepSeek-R1-Distill-Qwen-7B,以下类似缩写)就能在各方面超越GPT-4o-0513等非推理模型。

DeepSeek-R1-14B在所有评估指标上超越QwQ-32B-Preview,而DeepSeek-R1-32B和DeepSeek-R1-70B在大多数基准测试中显著超越o1-mini。这些结果展示了知识蒸馏的巨大潜力

此外,研究发现对这些蒸馏模型应用RL能带来显著的进一步提升。考虑到这值得进一步探索,此处仅呈现简单SFT蒸馏模型的结果。

讨论

蒸馏与强化学习对比

通过蒸馏DeepSeek-R1,小型模型能够取得出色的结果。然而,仍有一个问题待解答:

模型是否可以通过本文讨论的大规模RL训练而不依赖蒸馏来达到相当的性能?

为回答这个问题,研究团队对Qwen-32B-Base使用数学、代码和STEM数据进行了超过10K步的大规模RL训练,得到DeepSeek-R1-Zero-Qwen-32B。

如表6所示的实验结果表明,32B基础模型经过大规模RL训练后,达到了与QwQ-32B-Preview相当的性能。然而,从DeepSeek-R1蒸馏得到的DeepSeek-R1-Distill-Qwen-32B在所有基准测试中的表现都显著优于DeepSeek-R1-Zero-Qwen-32B

因此,可以得出两个结论:

首先,将更强大的模型蒸馏到较小的模型中可以产生优异的结果,而较小的模型依靠本文提到的大规模RL需要巨大的计算力,甚至可能无法达到蒸馏的性能水平

其次,虽然蒸馏策略既经济又有效,但要突破智能的边界可能仍需要更强大的基础模型和更大规模的强化学习

未成功的尝试

在开发DeepSeek-R1的早期阶段,研究也遇到了失败和挫折。在此分享这些失败经验以提供见解,但这并不意味着这些方法无法开发出有效的推理模型。

过程奖励模型(PRM)

PRM是一种合理的方法,可以引导模型采用更好的方法解决推理任务。然而,在实践中,PRM有三个主要限制可能阻碍其最终成功。

首先,在一般推理中明确定义细粒度步骤具有挑战性。其次,确定当前中间步骤是否正确是一项具有挑战性的任务。使用模型的自动标注可能无法产生令人满意的结果,而手动标注不利于规模化。第三,一旦引入基于模型的PRM,必然导致奖励欺骗,重新训练奖励模型需要额外的训练资源,并使整个训练流程变得复杂。

总之,虽然PRM在对模型生成的前N个响应重新排序或辅助引导搜索方面表现良好,但在实验中,相比其在大规模强化学习过程中引入的额外计算开销,其优势有限

蒙特卡洛树搜索(MCTS)

AlphaGoAlphaZero的启发,研究探索使用MCTS来增强测试时计算的可扩展性。这种方法包括将答案分解为更小的部分,使模型能够系统地探索解决方案空间。为此,提示模型生成多个标签,对应搜索所需的具体推理步骤。在训练方面,首先使用收集的提示通过预训练值模型引导的MCTS寻找答案。随后,使用产生的问答对来训练actor模型和值模型,不断改进过程。

然而,这种方法在扩大训练规模时遇到几个挑战。首先,与搜索空间相对明确的象棋不同,token生成呈现指数级更大的搜索空间。为解决这个问题,为每个节点设置最大扩展限制,但这可能导致模型陷入局部最优。其次,值模型直接影响生成质量,因为它指导搜索过程的每个步骤。训练细粒度值模型本质上是困难的,这使得模型难以迭代改进。虽然AlphaGo的核心成功依赖于训练值模型来逐步提升性能,但由于token生成的复杂性,这一原则在团队的设置中难以复制。

总之,虽然MCTS在与预训练值模型配对时可以改善推理性能,但通过自搜索迭代提升模型性能仍然是一个重大挑战

结论、局限性和未来工作

本文分享了通过RL增强模型推理能力的探索历程。DeepSeek-R1-Zero代表了一种不依赖冷启动数据的纯RL方法,在各种任务中取得了出色的表现。DeepSeek-R1通过结合冷启动数据和迭代RL微调展现出更强的性能,最终在多个任务上达到与OpenAI-o1-1217相当的水平。

研究进一步探索了将推理能力蒸馏到小型稠密模型的可能性。以DeepSeek-R1作为教师模型生成80万条数据,并对多个小型稠密模型进行微调。

结果令人鼓舞:DeepSeek-R1-Distill-Qwen-1.5B在数学基准测试中超越GPT-4o和Claude-3.5-Sonnet,在AIME上达到28.9%,在MATH上达到83.9%的成绩。其他稠密模型也取得了显著成果,大幅超越基于相同基础检查点的其他指令微调模型。

未来,计划在以下方向继续推进DeepSeek-R1的研究:

  • 通用能力:目前DeepSeek-R1在函数调用、多轮对话、复杂角色扮演和json输出等任务上的能力仍不及DeepSeek-V3。后续研究将探索如何利用长CoT增强这些领域的任务表现。
  • 语言混杂:DeepSeek-R1当前针对中文和英文进行了优化,在处理其他语言的查询时可能出现语言混杂问题。例如,即使查询使用非英文或中文的语言,DeepSeek-R1可能使用英语进行推理和响应。未来更新将着力解决这一限制。
  • 提示词工程:在评估DeepSeek-R1时发现,模型对prompt较为敏感。少样本提示会持续降低其性能。因此,建议用户直接描述问题并使用零样本设置指定输出格式以获得最佳结果
  • 软件工程任务:由于评估时间较长影响RL过程效率,大规模RL尚未在软件工程任务中广泛应用。因此,DeepSeek-R1在软件工程基准测试上相比DeepSeek-V3未显示出显著改进。未来版本将通过对软件工程数据实施拒绝采样或在RL过程中引入异步评估来提高效率。

LLM训练-人工强化反馈对齐算法:RLHF, RLAIF, PPO, DPO and More

参考论文:A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More

相关博客:https://wqw547243068.github.io/rlhf

参考代码:Align Anything: Training All-modality Model with Feedback

端到端推理学习增强推理能力方法

a.推理时扩展(Inference-time scaling): 如链式思维(CoT)或自我一致性(Self-Consistency),以增强模型的推理能力;【cot:核心思想是将复杂问题分解为一系列可解释的中间步骤。通过明确的推理链条,模型能够逐步解决原本可能超出其直接推理能力的问题。思维链方法特别适用于涉及多步骤推理的任务,如数学题、多重逻辑推理问题等。 Self-Consistency 自我一致提示是在 CoT 基础上进一步优化,通过采样多条推理路径,找出最一致的答案。它适用于对结果准确性要求更高的场景,避免一次性推理路径的偶然性导致错误。】

b.纯强化学习(Pure Reinforcement Learning, RL): 通过强化学习训练模型,使其在没有监督数据的情况下,通过试错学习复杂任务; 【deepseek-R1-zero】

c.监督微调结合强化学习(SFT + RL): 首先对模型进行监督微调,然后使用强化学习进行进一步优化,以提高模型的推理能力。【deepseek-R1】

d.纯监督微调和蒸馏(Pure Supervised Fine-Tuning and Distillation)仅使用监督学习和模型蒸馏技术来增强模型的推理能力。【deepseek-R1-distill蒸馏模型

一个完整的LLM训练过程包含以下几步:

  • Model Initialization:加载模型和处理器
  • 数据准备:解析数据集并设置其格式
  • 模型推理:将数据输入到模型中并获取输出
  • 梯度更新:根据损失函数更新模型参数

对齐(alignment)其作用就是让 LLM 与人类的价值观保持一致。在对齐 LLM 方面,基于人类反馈的强化学习(RLHF)是一种突破性的技术。该方法催生了 GPT-4、Claude 和 Gemini 等强大模型。RLHF 之后,人们也探索了多种多样的对齐 LLM 的方法。但是,此前还没有人全面总结对齐 LLM 与人类偏好的方法。

Salesforce 决定填补这一空白,于近日发布了一份 37 页的综述报告,其中按类别总结了现有的研究文献,并详细分析了各篇论文。

Introduction

这篇论文分为四大主题:奖励模型、反馈、强化学习(RL)、优化。每个主题又包含进一步的子主题,如图 1 所示。

xPO LLM 与人类偏好保持一致的 13 个分类方向

奖励模型的子主题包括:1. 显式奖励模型与隐式奖励模型;2. 逐点奖励模型与偏好模型;3. 响应层面的奖励与 token 层面的奖励;4. 负偏好优化。

反馈的子主题包括:1. 偏好反馈与二元反馈;2. 成对反馈与列表反馈;3. 人类反馈与 AI 反馈。

强化学习的子主题包括:1. 基于参考的强化学习与无参考的强化学习;2. 长度控制式强化学习;3. 强化学习中的不同分支;4. 在线策略强化学习与离线策略强化学习

优化的子主题包括:1. 在线 / 迭代式偏好优化与离线 / 非迭代式偏好优化;2. 分离 SFT 和对齐与合并 SFT 和对齐。

Individual Paper Reviews in Detail

1. RLHF/PPO

LLM 的预训练要用到大量来自不同来源的语料库,而这本身就无法确保这些数据集的质量。此外,LLM 的主要目标是预测下一个 token,这个目标与「有用且安全地遵从用户指令」的目标并不一致。因此,LLM 可能会输出不真实、有害或对用户无用的内容。本质上讲,这些模型并未与用户意图对齐。RLHF/PPO 的主要目标是在各种任务上对齐语言模型与用户意图,其做法是使用人类反馈来微调模型。有关这个主题的研究有很多。

2. RLAIF

获取人类偏好数据集的成本不低,因此基于人工智能反馈的强化学习(RLAIF)诞生了。此外,随着 LLM 的能力不断进步,所能收集到的 AI 偏好数据集的质量也不断提高,由此可提升 LLM 的对齐效果。

3.直接人类偏好优化

传统 RLHF 方法通常涉及到优化源自人类偏好的奖励函数。该方法虽有效,但也可能带来一些难题,比如增大计算复杂度以及在估计和优化奖励时需要考虑偏置 – 方差权衡。参阅论文《High-dimensional continuous control using generalized advantage estimation》。

近期有研究探索了其它一些旨在根据人类偏好(无需依赖某个标量的奖励信号)来直接优化 LLM 策略的方法。

这些方法的目标是通过更直接地使用偏好数据来简化对齐流程、降低计算开销以及实现更稳健的优化。通过将该问题描述为一个偏好优化问题,而不是奖励估计和最大化问题,这些方法能提供一种将语言模型与人类判断对齐的不同视角

4.token 级 DPO

使用 DPO 时,奖励会被一起分配给 prompt 和响应。相反,使用 MDP 时,奖励会被分配给各个动作。后续的两篇论文在 token 层面阐述了 DPO 并将其应用扩展到了 token 级的分析。

5.迭代式 / 在线 DPO

使用 DPO 时,会使用所有可用的偏好数据集来对齐 LLM。为了持续提升 LLM,应当实现迭代式 / 在线 DPO。这就引出了一个有趣的问题:如何高效地收集新的偏好数据集。下面两篇论文深入探讨了这一主题。

  • 自我奖励式语言模型,参阅论文《Self-rewarding language models》。
  • CRINGE,参阅论文《The cringe loss: Learning what language not to model》。

6.二元反馈

事实证明,收集偏好反馈比收集二元反馈(比如点赞或点踩)的难度大,因此后者可促进对齐过程的扩展。KTO 和 DRO 这两项研究关注的便是使用二元反馈来对齐 LLM。

  • KTO,Kahneman-Tversky 优化,参阅论文《KTO: Model alignment as prospect theoretic optimization》。
  • DRO,直接奖励优化,参阅论文《Offline regularised reinforcement learning for large language models alignment》。

7.融合 SFT 和对齐

之前的研究主要还是按顺序执行 SFT 和对齐,但事实证明这种方法很费力,并会导致灾难性遗忘。后续的研究有两个方向:一是将这两个过程整合成单一步骤;二是并行地微调两个模型,最终再进行融合。

  • ORPO,比值比偏好优化,参阅论文《ORPO: Monolithic preference optimization without reference model》。
  • PAFT,并行微调,参阅论文《PAFT: A parallel training paradigm for effective llm fine-tuning》。

8.长度控制式 DPO 和无参考 DPO

之前有研究表明,LLM 的输出往往过于冗长。为了解决这个问题,R-DPO 和 SimPO 的关注重心是在不影响生成性能的前提下实现对响应长度的控制。

此外,DPO 必需参考策略来确保已对齐模型不会与参考模型有太大偏差。相较之下,SimPO 和 RLOO 提出了一些方法,可以在不影响 LLM 效果的情况下消除对参考模型的需求

9.逐列表的偏好优化

之前在 PPO 和 DPO 方面的研究关注的是成对偏好,而 RLHF 方面的研究则是收集逐列表的偏好来加速数据收集过程,之后再将它们转换成成对偏好。尽管如此,为了提升 LLM 的性能,直接使用逐列表的数据集来执行偏好优化是可行的。以下三篇论文专门讨论了这种方法。

  • LiPO,逐列表偏好优化,参阅论文《LIPO: Listwise preference optimization through learning-to-rank》。
  • RRHF,参阅论文《RRHF: Rank responses to align language models with human feedback without tears》。
  • PRO,偏好排名优化,参阅论文《Preference ranking optimization for human alignment》。

10.负偏好优化

这些研究有一个共同前提:当前这一代 LLM 已经在翻译和总结等任务上超越了人类性能。因此,可以将 LLM 的输出视为期望响应,而无需依靠将人类标注的数据视为偏好响应;这样做是有好处的。反过来,不期望得到的响应依然也可被用于对齐 LLM,这个过程就是所谓的负偏好优化(NPO)。

  • NN,否定负例方法,参阅论文《Negating negatives: Alignment without human positive samples via distributional dispreference optimization》。
  • NPO,负例偏好优化,参阅论文《Negative preference optimization: From catastrophic collapse to effective unlearning》。
  • CPO,对比偏好优化,参阅论文《Contrastive preference optimization: Pushing the boundaries of llm performance in machine translation》。

11.纳什学习

之前的研究通常是使用逐点奖励和 BT 模型来得到成对偏好。但是,这种方法比不上直接成对偏好建模并且无法解决成对偏好中的不一致问题。为了克服这些局限,一些研究提出了纳什学习方法。

  • 根据人类反馈的纳什学习,参阅论文《Nash learning from human feedback》。
  • SPPO,自博弈偏好优化,参阅论文《A minimaximalist approach to reinforcement learning from human feedback》。
  • DNO,直接纳什优化,参阅论文《Direct nash optimization: Teaching language models to self-improve with general preferences》。

LLM 对齐(Alignment)方法:SFT、PPO、DPO 、ORPO详细介绍

LLM(大语言模型)的对齐(Alignment)方法旨在让 AI 的输出更加符合人类预期,减少错误信息、有害内容或不准确的回答。主要总结LLM训练中的基本的对齐算法, 监督微调 (SFT)、直接偏好优化 (DPO) 和近端策略优化 (PPO)等。

SFT(Supervised Fine-Tuning,监督微调)

监督微调(SFT)是 LLM 训练中的第一步,通过高质量的人工标注数据集对模型进行微调,使其具备基础的任务能力。SFT 是所有对齐方法的基础,如 RLHF、DPO 等都依赖于一个经过 SFT 训练的模型作为初始状态。

过程

  1. 数据准备:收集高质量的指令-响应(Instruction-Response)数据集,例如人类标注的数据或合成的数据。
  2. 模型微调:使用交叉熵损失(Cross-Entropy Loss)训练模型,使其学习提供与标注数据匹配的答案。
  3. 效果:使模型在常见任务(如问答、代码生成、对话等)中表现更好,提高其对指令的遵循能力。

给定输入 x(Prompt) 和目标输出 y(Response),模型的目标是最大化生成目标文本的概率:

其中:

  • Pθ​(yt​∣x,y<t​) 是 LLM 在给定上下文下预测下一个 token yt​ 的概率。
  • 训练时采用交叉熵损失(Cross Entropy Loss)来优化模型参数 θ。

SFT 仅依赖于人工标注数据,无法让模型学习偏好信息(比如不同回答的优劣)。无法动态调整:SFT 训练后,模型固定,难以针对用户反馈进行调整。缺乏探索性:模型只会学到训练数据中的模式,无法进行强化学习优化。

DPO(Direct Preference Optimization,直接偏好优化)

论文:https://arxiv.org/abs/2305.18290

参考代码:https://github.com/eric-mitchell/direct-preference-optimization

DPO(直接偏好优化)是一种比 RLHF 更简单、更高效的对齐方法。
它不需要训练奖励模型(RM)和使用强化学习(RL),而是直接优化 LLM,使其更符合人类偏好数据

偏好数据

  • 每个输入 Prompt 对应两个候选回答:一个优选(Preferred y+),一个劣选(Dispreferred y−)。
  • 例如:

Prompt: “如何写一封正式的电子邮件?”
Response 1 (优选): “在邮件中应保持正式语气,并包含称呼、正文和署名。”
Response 2 (劣选): “随便写就行了,不要太在意格式。”

优化 LLM 使其更倾向于优选回答

只需要加载2个相同的模型,其中一个推理[reference model:old策略模型],另外一个模型[policy model 策略模型]训练,直接在偏好数据上进行训练即可:

Reference Model(以下简称Ref模型)一般也用SFT阶段得到的SFT模型做初始化,在训练过程中,它的参数是冻结的。Ref模型的主要作用是防止Actor”训歪”

损失函数: DPO 直接优化模型输出的偏好分布:

其中:

  • σ :sigmoid函数
  • β :超参数,一般在0.1 – 0.5之间
  • yw :某条偏好数据中好的response,w就是win的意思
  • yl :某条偏好数据中差的response,l就是loss的意思,所以偏好数据也叫comparision data
  • πθ(yw|x) :给定输入x, 当前 策略policy model生成好的response的累积概率(每个tokne的概率求和,具体看代码)
  • πref(yl|x) :给定输入x, 原始模型(reference model)生成坏的response的累积概率

开始训练时,reference model和policy model都是同一个模型,只不过在训练过程中reference model不会更新权重。

为了方便分析,我们把log里的分式展开,然后β设为1,并且暂时不看前面的log_sigmoid,那么上面的loss可以简化为:

由于最初loss前面是有个负号的,所以优化目标是让本简化公式最大,即我们希望左半部分和右半部分的margin越大越好,左半部分的含义是good response相较于没训练之前的累积概率差值,右半部分代表bad response相较于没训练之前的累计概率差值,如果这个差值,即margin变大了,就意味着:

  • 1)左边变大,右边变小,理想情况,good response概率提升,bad response概率下降
  • 2)左边变小,右边更小,good response概率下降,但是bad response概率下降的更多,生成的时候还是倾向于good response
  • 3)左边变的更大,右边只大了一点点,和2)同理

所以这个loss颇有一种对比的感觉。

PPO(Proximal Policy Optimization,近端策略优化)

论文:https://arxiv.org/abs/1707.06347

详解:https://zhuanlan.zhihu.com/p/677607581

人人都能看懂的RL-PPO理论知识

是OpenAI在2017提出的一种强化学习算法,是基于策略优化的算法,用于训练能够最大化累积奖励的智能体。PPO算法通过在每次更新时限制新策略与旧策略之间的差异,从而更稳定地更新策略参数。这种方法有助于避免训练过程中出现的不稳定性和剧烈波动,使得算法更容易收敛并学习到更好的策略。

强化学习基本概念

  • 强化学习的两个实体:智能体(Agent)环境(Environment)
  • 强化学习中两个实体的交互:
    • 状态空间S:S即为State,指环境中所有可能状态的集合
    • 动作空间A:A即为Action,指智能体所有可能动作的集合
    • 奖励R:R即为Reward,指智能体在环境的某一状态下所获得的奖励。

以上图为例,智能体与环境的交互过程如下:

  • 在 t 时刻,环境的状态为 St ,达到这一状态所获得的奖励为 Rt
  • 智能体观测到 St 与 Rt ,采取相应动作 At
  • 智能体采取 At 后,环境状态变为 St+1 ,得到相应的奖励 Rt+1

奖励值 Rt ,它表示环境进入状态 St 下的即时奖励
但如果只考虑即时奖励,目光似乎太短浅了:当下的状态和动作会影响到未来的状态和动作,进而影响到未来的整体收益。
所以,一种更好的设计方式是:t时刻状态s的总收益 = 身处状态s能带来的即时收益 + 从状态s出发后能带来的未来收益写成表达式就是:Vt=Rt+γVt+1

其中:

  • Vt : t 时刻的总收益,注意这个收益蕴涵了“即时”和“未来”的概念
  • Rt : t 时刻的即时收益
  • Vt+1 : t+1 时刻的总收益,注意这个收益蕴涵了“即时”和“未来”的概念。而 Vt+1 对 Vt 来说就是“未来”。
  • γ :折扣因子。它决定了我们在多大程度上考虑将“未来收益”纳入“当下收益”。

关键概念:

策略函数是一个 概率密度函数(PDF),输入时当前状态s,输出为一个概率分布,表征每个 action 的概率:

动作值函数:评价在状态 st 的情况下做出动作 at的好坏程度。

状态值函数:

  • 消掉了动作 A ,这样 Vπ 只跟状态 s 与策略函数 π 有关了。
  • 给定 π,可以评价当前状态的好坏;给定状态st,可以评价策略 π的好坏。

优势函数:有些时候我们不需要描述一个行动的绝对好坏,而只需要知道它相对于平均水平的优势。也就是说,我们只想知道一个行动的相对 优势 。这就是优势函数的概念。

一个服从策略 \pi 的优势函数,描述的是它在状态 s 下采取行为 a 比随机选择一个行为好多少(假设之后一直服从策略 \pi )。数学角度上,优势函数的定义为:

长期价值可以表示为状态值函数(State Value Function)或动作值函数(Action Value Function)。

优化方法:

value-based:优化状态动作值函数Q(s) ,贪心选择(确定性策略) :Q-Learning

policy-based :直接优化策略函数π(s, a),按概率采样(随机性策略) :REINFORCE

Actor-Critic •融合上述方法,同时优化Q与π:TRPO、PPO

NLP中的强化学习

在第一部分介绍了通用强化学习的流程,那么我们要怎么把这个流程对应到NLP任务中呢?换句话说,NLP任务中的智能体、环境、状态、动作等等,都是指什么呢?

回想一下我们对NLP任务做强化学习(RLHF)的目的:我们希望给模型一个prompt,让模型能生成符合人类喜好的response。再回想一下gpt模型做推理的过程:每个时刻 t 只产生一个token,即token是一个一个蹦出来的,先有上一个token,再有下一个token。


复习了这两点,现在我们可以更好解读上面这张图了:

  • 我们先喂给模型一个prompt,期望它能产出符合人类喜好的response
  • 在 t 时刻,模型根据上文,产出一个token,这个token即对应着强化学习中的动作,我们记为At 。因此不难理解,在NLP语境下,强化学习任务的动作空间就对应着词表。
  • 在 t 时刻,模型产出token At对应着的即时收益为Rt,总收益为Vt复习一下, Vt 蕴含着“即时收益”与“未来收益”两个内容)。这个收益即可以理解为“对人类喜好的衡量”。此刻,模型的状态从St变为St+1,也就是从“上文”变成“上文 + 新产出的token”
  • 在NLP语境下,智能体是语言模型本身,环境则对应着它产出的语料

这样,我们就大致解释了NLP语境下的强化学习框架,不过针对上面这张图,你可能还有以下问题:


(1)问题1:图中的下标是不是写得不太对?例如根据第一部分的介绍, At 应该对应着 Rt+1  At+1 应该对应着 Rt+2 ,以此类推?
答:你说的对。但这里我们不用太纠结下标的问题,只需要记住在对应的response token位置,会产生相应的即时奖励和总收益即可。之所以用图中这样的下标,是更方便我们后续理解代码。


(2)问题2:我知道 At 肯定是由语言模型产生的,那么 ,Rt,Vt 是怎么来的呢,也是语言模型产生的吗?
答:先直接说结论, At 是由我们的语言模型产生的, ,Rt,Vt 则分别由另外两个模型来产生,在后文中我们会细说。


(3)问题3:语言模型的参数在什么时候更新?是观测到一个 Rt,Vt ,就更新一次参数,然后再去产生 At+1 吗?
答:当然不是。你只看到某个时刻的收益,就急着用它更新模型,这也太莽撞了。我们肯定是要等有足够的观测数据了(例如等模型把完整的response生成完),再去更新它的参数。这一点我们也放在后文细说。


(4)问题4:再谈谈 Rt,Vt 吧,在NLP的语境下我还是不太理解它们
答:

  • 首先,“收益”的含义是“对人类喜好的衡量”
  • Rt :即时收益,指语言模型当下产生token At 带来的收益
  • Vt : 实际期望总收益(即时+未来),指对语言模型“当下产生token At ,一直到整个response生产结束”后的期收益预估。因为当下语言模型还没产出 At 后的token,所以我们只是对它之后一系列动作的收益做了估计,因而称为“期望总收益”。

RLHF中的四个重要角色:

我们从第二部分中已经知道:生成token At 和对应收益 Rt,Vt 的并不是一个模型。那么在RLHF中到底有几个模型?他们是怎么配合做训练的?而我们最终要的是哪个模型?

如上图,在RLHF-PPO阶段,一共有四个主要模型,分别是:

  • Actor Model:演员模型,这就是我们想要训练的目标语言模型
  • Critic Model:评论家模型,它的作用是预估总收益 Vt
  • Reward Model:奖励模型,它的作用是计算即时收益 Rt
  • Reference Model:参考模型,它的作用是在RLHF阶段给语言模型增加一些“约束”,防止语言模型训歪(朝不受控制的方向更新,效果可能越来越差)

其中:

  • Actor/Critic Model在RLHF阶段是需要训练的(图中给这两个模型加了粗边,就是表示这个含义);而Reward/Reference Model参数冻结的。
  • Critic/Reward/Reference Model共同组成了一个“奖励-loss”计算体系(我自己命名的,为了方便理解),我们综合它们的结果计算loss,用于更新Actor和Critic Model

Actor Model (演员模型)

正如前文所说,Actor就是我们想要训练的目标语言模型。我们一般用SFT阶段产出的SFT模型来对它做初始化。

我们的最终目的是让Actor模型能产生符合人类喜好的response。所以我们的策略是,先喂给Actor一条prompt (这里假设batch_size = 1,所以是1条prompt),让它生成对应的response。然后,我们再将“prompt + response”送入我们的“奖励-loss”计算体系中去算得最后的loss,用于更新actor。

Reference Model(参考模型)

Reference Model(以下简称Ref模型)一般也用SFT阶段得到的SFT模型做初始化,在训练过程中,它的参数是冻结的。Ref模型的主要作用是防止Actor”训歪”,那么它具体是怎么做到这一点的呢?

“防止模型训歪”换一个更详细的解释是:我们希望训练出来的Actor模型既能达到符合人类喜好的目的,又尽量让它和SFT模型不要差异太大。简言之,我们希望两个模型的输出分布尽量相似。那什么指标能用来衡量输出分布的相似度呢?我们自然而然想到了KL散度

如图所示:

  • 对Actor模型,我们喂给它一个prompt,它正常输出对应的response。那么response中每一个token肯定有它对应的log_prob结果呀,我们把这样的结果记为log_probs
  • 对Ref模型,我们把Actor生成的”prompt + response”喂给它,那么它同样能给出每个token的log_prob结果,我们记其为ref_log_probs
  • 那么这两个模型的输出分布相似度就可以用ref_log_probs - log_probs来衡量,我们可以从两个方面来理解这个公式:
    • 从直觉上理解,两个分布的相似度越高,说明Ref模型对Actor模型输出的肯定性越大。即Ref模型也认为,对于某个 St ,输出某个 At 的概率也很高( P(At|St) )。这时可以认为Actor模型较Ref模型没有训歪。
    • 从KL散度上理解

(当然这里不是严格的等于,只是KL散度的近似),这个值越小意味着两个分布的相似性越高。

注:你可能已经注意到,按照KL散度的定义,这里写成log_probs - ref_log_probs更合适一些。但是如果你看过一些rlhf相关的论文的话,你可能记得在计算损失函数时,有一项Rt−KL散度 (对这个有疑惑不要紧,我们马上在后文细说),即KL散度前带了负号,所以这里我写成ref_log_probs - log_probs这样的形式,更方便大家从直觉上理解这个公式。

现在,我们已经知道怎么利用Ref模型和KL散度来防止Actor训歪了。KL散度将在后续被用于loss的计算,我们在后文中会详细解释。

Critic Model(评论家模型)

Critic Model用于预测期望总收益 Vt ,和Actor模型一样,它需要做参数更新。实践中,Critic Model的设计和初始化方式也有很多种,例如和Actor共享部分参数、从RW阶段的Reward Model初始化而来等等。我们讲解时,和deepspeed-chat的实现保持一致:从RW阶段的Reward Model初始化而来。


你可能想问:训练Actor模型我能理解,但我还是不明白,为什么要单独训练一个Critic模型用于预测收益呢?
这是因为,当我们在前文讨论总收益 Vt (即时 + 未来)时,我们是站在上帝视角的,也就是这个 Vt 就是客观存在的、真正的总收益。但是我们在训练模型时,就没有这个上帝视角加成了,也就是在 t 时刻,我们给不出客观存在的总收益 Vt ,我们只能训练一个模型去预测它。


所以总结来说,在RLHF中,我们不仅要训练模型生成符合人类喜好的内容的能力(Actor),也要提升模型对人类喜好量化判断的能力(Critic)。这就是Critic模型存在的意义。我们来看看它的大致架构:

deepspeed-chat采用了Reward模型作为它的初始化,所以这里我们也按Reward模型的架构来简单画画它。你可以简单理解成,Reward/Critic模型和Actor模型的架构是很相似的(毕竟输入都一样),同时,它在最后一层增加了一个Value Head层,该层是个简单的线形层,用于将原始输出结果映射成单一的 Vt 值。

在图中, Vt 表示Critic模型对 t 时刻及未来(response完成)的收益预估。

 Reward Model(奖励模型)

Reward Model用于计算生成token At 的即时收益,它就是RW阶段所训练的奖励模型,在RLHF过程中,它的参数是冻结的。


你可能想问:为什么Critic模型要参与训练,而同样是和收益相关的Reward模型的参数就可以冻结呢?
这是因为,Reward模型是站在上帝视角的。这个上帝视角有两层含义:

  • 第一点,Reward模型是经过和“估算收益”相关的训练的,因此在RLHF阶段它可以直接被当作一个能产生客观值的模型。
  • 第二点,Reward模型代表的含义就是“即时收益”,你的token At 已经产生,因此即时收益自然可以立刻算出。

你还可能想问:我已经用Critic预测出 Vt 了,而这个 Vt 包含了“即时”和“未来”的概念,那我还需要代表“即时”的 Rt 做什么呢?直接用 Vt 不就好了吗?


为了解答这个问题,我们先回顾下1.2部分中给出的价值函数: Vt=Rt+γVt+1
这个函数告诉我们,我们当前可以用两个结果来表示 t 时刻的总收益:

  • 结果1:Critic模型预测的 Vt
  • 结果2:Reward模型预测的 Rt 和critic模型预测的 Vt+1

那么哪一个结果更靠近上帝视角给出的客观值呢?当然是结果2,因为结果1全靠预测,而结果2中的 Rt 是事实数据。
我们知道Critic模型也是参与参数更新的,我们可以用MSE(上帝视角的客观收益-Critic模型预测的收益)来衡量它的loss。但是上帝视角的客观收益我们是不知道的,只能用已知事实数据去逼近它,所以我们就用 Rt+γ∗Vt+1 来做近似。这就是 Rt,Vt 同时存在的意义

Reward模型和critic模型非常相似,这里我们就只给出架构图,不再做过多的说明。

RLHF中的loss计算

到目前为止,我们已经基本了解了RLHF的训练框架,以及其中的四个重要角色(训练一个RLHF,有4个模型在硬件上跑,可想而知对存储的压力)。在本节中,我们一起来解读RLHF的loss计算方式。在解读中,我们会再一次理一遍RLHF的整体训练过程,填补相关细节。在这之后,我们就可以来看代码解析了。


在第三部分的讲解中,我们知道Actor和Critic模型都会做参数更新,所以我们的loss也分成2个:

  • Actor loss:用于评估Actor是否产生了符合人类喜好的结果,将作用于Actor的BWD上。
  • Critic loss:用于评估Critic是否正确预测了人类的喜好,将作用于Critic的BWD上。

我们详细来看这两者。

Actor loss

(1)直观设计

我们先来看一个直观的loss设计方式:

  • Actor接收到当前上文 St ,产出token At ( P(At|St) )
  • Critic根据 St,At ,产出对总收益的预测 Vt
  • 那么Actor loss可以设计为: 

求和符号表示我们只考虑response部分所有token的loss,为了表达简便,我们先把这个求和符号略去(下文也是同理),也就是说:

我们希望minimize这个actor_loss。


这个设计的直观解释是:

  • 当 Vt>0 时,意味着Critic对Actor当前采取的动作给了正向反馈,因此我们就需要在训练迭代中提高 P(At|St) ,这样就能达到减小loss的作用。
  • 当 Vt<0 时,意味着Critic对Actor当前采取的动作给了负向反馈,因此我们就需要在训练迭代中降低 P(At|St) ,这样就能到达到减小loss的作用。

一句话总结:这个loss设计的含义是,对上文 St 而言,如果token At 产生的收益较高,那就增大它出现的概率,否则降低它出现的概率。

(2)引入优势(Advantage)

在开始讲解之前,我们举个小例子:
假设在王者中,中路想支援发育路,这时中路有两种选择:1. 走自家野区。2. 走大龙路。
中路选择走大龙路,当她做出这个决定后,Critic告诉她可以收1个人头。结果,此刻对面打野正在自家采灵芝,对面也没有什么苟草英雄,中路一路直上,最终收割2个人头。
因为实际收割的人头比预期要多1个,中路尝到了甜头,所以她增大了“支援发育路走大龙路”的概率。
这个多出来的“甜头”,就叫做“优势”(Advantage)。


对NLP任务来说,如果Critic对 At 的总收益预测为 Vt ,但实际执行 At 后的总收益是 Rt+γ∗Vt+1 ,我们就定义优势为:

我们用 Advt 替换掉 Vt ,则此刻actor_loss变为:

(3)重新设计 Rt

总结一下,到目前为止,我们的actor_loss形式为:

同时注意,这个actor_loss应该是response的所有token loss的sum或者avg。这里为了表达方便,我们的公式略去了求和或求平均的符号。

按照这个理解, Rt 应该表示每个Actor产出token At 带来的即时收益,正如下图所示(其中 T 表示最后一个时刻):

但在deepspeed-chat的RLHF实践中,对 Rt 做了另一种设计:

基于这些,上面这个对 Rt 的设计可理解成:

  • t≠T时,我们更加关心Actor是否有在Ref的约束下生产token At
  • $ t=T时,我们不仅关心Actor是否遵从了Ref的约束,也关心真正的即时收益Rt


为什么只有最后一个时刻的 Rt 被纳入了考量呢?这是因为在Reward模型训练阶段,就是用这个位置的 Rt 来表示对完整的prompt + response的奖励预测(但不妨碍你理解成是执行完 AT 的即时奖励),然后用这个指标来做模型eval的(但是Reward训练阶段算loss时,还是考虑了response部分所有token输出的reward值)。所以到了RLHF的场景下,其余时刻的即时奖励,我们就用“Actor是否遵循了Ref的约束”来进行评价。


需要注意的是, Rt 的设计并不只有这一种。deepspeed在自己的代码注释中也有提过,可以尝试把最后一个时刻的 RT 替换成所有token的即时奖励的平均值。如果站在这个角度理解的话,我们同样也可以尝试在每一个位置的奖励衡量上引入 Rt 。

代码实践如下:

def compute_rewards(self, prompts, log_probs, ref_log_probs, reward_score,
                        action_mask):
        """
        reward_function:计算最终的reward分数
        复习一下几个相关参数的默认值:
        self.kl_ctl = 0.1
        self.clip_reward_value = 5
        
        对于batch中的某个prompt来说,它最终的reward分数为:
        (1) 先计算actor和ref_model的logit相似度: -self.kl_ctl * (log_probs - ref_log_probs)
            其实写成self.kl_ctl * (ref_log_probs - log_probs)更好理解些
            这个值越大,说明ref_model对actor生成的结果的认可度越高(即表明rlhf没有训歪),
            没有训歪的情况下我们也应该给模型一些奖励,这个奖励就是self.kl_ctl * (ref_log_probs - log_probs)
            
        (2)由于我们只取最后一个token对应位置的分数作为reward_score,因此我们只需要:
            self.kl_ctl * (ref_log_probs - log_probs)的最后一位 + reward_score
         
         (3) 同时我们对reward_score也做了大小限制,最大不超过self.clip_reward_value(超过统一给成self.clip_reward_value),
             最小不低于-self.clip_reward_value(低于统一给成-self.clip_reward_value)
        
         (4) 最后返回的rewards大小为:(batch_size, 各条数据的长度),对batch中的每条数据来说:
             - response的最后一位:self.kl_ctl * (ref_log_probs - log_probs)的最后一位 + reward_score
             - response的其余位置:self.kl_ctl * (ref_log_probs - log_probs)
        
        """

        kl_divergence_estimate = -self.kl_ctl * (log_probs - ref_log_probs)
        rewards = kl_divergence_estimate
        # ---------------------------------------------------------------------------------------------------
        # response开始的位置
        # (因为我们对prompt做过padding处理,因此batch中每个prompt长度一致,也就意味着每个response开始的位置一致)
        # (所以这里start是不加s的,只是一个int)
        # ---------------------------------------------------------------------------------------------------
        start = prompts.shape[1] - 1
        # ---------------------------------------------------------------------------------------------------
        # response结束的位置
        # (因为一个batch中,每个response的长度不一样,所以response的结束位置也不一样)
        # (所以这里end是加s的,ends的尺寸是(batch_size,)
        # ---------------------------------------------------------------------------------------------------
        ends = start + action_mask[:, start:].sum(1) + 1
        # ---------------------------------------------------------------------------------------------------
        # 对rewards_score做限制
        # ---------------------------------------------------------------------------------------------------
        reward_clip = torch.clamp(reward_score, -self.clip_reward_value,
                                  self.clip_reward_value)
        batch_size = log_probs.shape[0]
        for j in range(batch_size):
            rewards[j, start:ends[j]][-1] += reward_clip[j] # 

        return rewards

(4)重新设计优势

好,再总结一下,目前为止我们的actor_loss为:

同时,我们对 Rt 进行来改造,使其能够衡量Actor模型是否遵从了Ref模型的约束。
现在我们把改造焦点放在 Advt 上,回想一下,既然对于收益而言,分为即时和未来,那么对于优势而言,是不是也能引入对未来优势的考量呢?这样,我们就可以把 Advt 改写成如下形式:


(熟悉强化学习的朋友应该能一眼看出这是GAE,这里我们不打算做复杂的介绍,一切都站在直觉的角度理解)
其中,新引入的 λ 也是一个常量,可将其理解为权衡因子,直觉上看它控制了在计算当前优势时对未来优势的考量。(从强化学习的角度上,它控制了优势估计的方差和偏差)

看到这里,你可能想问:这个代表未来优势的 Advt+1 ,我要怎么算呢?
注意到,对于最后一个时刻 t ,它的未来收益( VT+1 )和未来优势( AdvT+1 )都是0,也就是 AdvT=RT−VT ,这是可以直接算出来的。而有了 AdvT ,我们不就能从后往前,通过动态规划的方法,把所有时刻的优势都依次算出来了吗?

代码实践如下(其中返回值中的returns表示实际收益,将被用于计算Critic模型的loss,可以参见4.2,其余细节都在代码注释中):

 def get_advantages_and_returns(self, values, rewards, start):
        """
        Adopted from https://github.com/CarperAI/trlx/blob/main/trlx/models/modeling_ppo.py#L134
        
        没有引入GAE前的t时刻的优势值:
        detal_t = r_t + gamma * V_t+1 - V_t
        其中:
            - r_t表示t时刻的即时收益
            - V_t+1表示未来时刻的预期收益
            - r_t + gamma * V_t+1可理解成t时刻的实际预期收益
            - V_t可理解成t时刻的预估预期收益(是模型,例如critic model自己估算出来的)
        
        引入GAE后的t时刻的优势值:
        A_t = delta_t + gamma * lambda * A_t+1
        粗暴理解为在t时刻时,不仅考虑当下优势,还考虑了未来的优势
        为了知道A_t, 我们得知道A_t+1,所以在本算法中采取了从后往前做动态规划求解的方法,也即:
        假设T是最后一个时刻,则有A_T+1 = 0, 所以有: A_T = delta_T
        知道了A_T, 就可以依次往前倒推,把A_t-1, A_t-2之类都算出来了
        
        引入GAE后t时刻的实际预期收益
        returns_t = A_t + V_t
                  = delta_t + gamma * lambda * A_t+1 + V_t
                  = r_t + gamma * V_t+1 - V_t + gamma * lambda * A_t+1 + V_t
                  = r_t + gamma * (V_t+1 + lambda * A_t+1)
        
        注意,这里不管是advantages还是returns,都只算response的部分
        """
        
        # Adopted from https://github.com/CarperAI/trlx/blob/main/trlx/models/modeling_ppo.py#L134
        lastgaelam = 0
        advantages_reversed = []
        length = rewards.size()[-1]
        # 注意这里用了reversed,是采取从后往前倒推计算的方式
        for t in reversed(range(start, length)):
            nextvalues = values[:, t + 1] if t < length - 1 else 0.0
            delta = rewards[:, t] + self.gamma * nextvalues - values[:, t]
            lastgaelam = delta + self.gamma * self.lam * lastgaelam
            advantages_reversed.append(lastgaelam)
        advantages = torch.stack(advantages_reversed[::-1], dim=1) # 优势
        returns = advantages + values[:, start:] # 实际收益
        # values: 预期收益
        return advantages.detach(), returns

(5)PPO-epoch: 引入新约束

总结一下,目前为止我们的actor_loss为:

同时

  • 我们已经对Rt进行来改造,使其能够衡量Actor模型是否遵从了Ref模型的约束。
  • 我们已经对Advt进行改造,使其不仅考虑了当前时刻的优势,还考虑了未来的优势

基于这些改造,我们重新理一遍RLHF-PPO的训练过程。

  • 第一步,我们准备一个batch的prompts
  • 第二步,我们将这个batch的prompts喂给Actor模型,让它生成对应的responses
  • 第三步,我们把prompt+responses喂给我们的Critic/Reward/Reference模型,让它生成用于计算actor/critic loss的数据,按照强化学习的术语,我们称这些数据为经验(experiences)。critic loss我们将在后文做详细讲解,目前我们只把目光聚焦到actor loss上
  • 第四步,我们根据这些经验,实际计算出actor/critic loss,然后更新Actor和Critic模型

这些步骤都很符合直觉,但是细心的你肯定发现了,文字描述中的第四步和图例中的第四步有差异:图中说,这一个batch的经验值将被用于n次模型更新,这是什么意思呢?

我们知道,在强化学习中,收集一个batch的经验是非常耗时的。对应到我们RLHF的例子中,收集一次经验,它要等四个模型做完推理才可以,正是因此,一个batch的经验,只用于计算1次loss,更新1次Actor和Critic模型,好像有点太浪费了。

所以,我们自然而然想到,1个batch的经验,能不能用来计算ppo-epochs次loss,更新ppo-epochs次Actor和Critic模型?简单写一下伪代码,我们想要:

# --------------------------------------------------------------
# 初始化RLHF中的四个模型
# --------------------------------------------------------------
actor, critic, reward, ref = initialize_models()

# --------------------------------------------------------------
# 训练
# --------------------------------------------------------------
# 对于每一个batch的数据
for i in steps: 
    # 先收集经验值
    exps = generate_experience(prompts, actor, critic, reward, ref)
    # 一个batch的经验值将被用于计算ppo_epochs次loss,更新ppo_epochs次模型
    # 这也意味着,当你计算一次新loss时,你用的是更新后的模型
    for j in ppo_epochs:
        actor_loss = cal_actor_loss(exps, actor)
        critic_loss = cal_critic_loss(exps, critic)
        
        actor.backward(actor_loss)
        actor.step()
        
        critc.backward(critic_loss)
        critic.step()

而如果我们想让一个batch的经验值被重复使用ppo_epochs次,等价于我们想要Actor在这个过程中,模拟和环境交互ppo_epochs次。举个例子:

  • 如果1个batch的经验值只使用1次,那么在本次更新完后,Actor就吃新的batch,正常和环境交互,产出新的经验值
  • 但如果1个batch的经验值被使用ppo_epochs次,在这ppo_epochs中,Actor是不吃任何新数据,不做任何交互的,所以我们只能让Actor“模拟”一下和环境交互的过程,吐出一些新数据出来。

那怎么让Actor模拟呢?很简单,让它观察一下之前的数据长什么样,让它依葫芦画瓢,不就行了吗?我们假设最开始吃batch,吐出经验的actor叫 Actorold ,而在伪代码中,每次做完ppo_epochs而更新的actor叫 Actornew ,那么我们只要尽量保证每次更新后的 Actornew 能模仿最开始的那个 Actorold ,不就行了吗?

诶!是不是很眼熟!两个分布,通过什么方法让它们相近!那当然是KL散度!所以,再回到我们的actor_loss上来,它现在就可被改进成:

我们再稍作一些改动将log去掉(这个其实不是“稍作改动去掉log”的事,是涉及到PPO中重要性采样的相关内容,大家有兴趣可以参考这篇):

其中, Pold 表示真正吃了batch,产出经验值的Actor;P表示ppo_epochs中实时迭代更新的Actor,它在模仿 Pold 的行为。所以这个公式从直觉上也可以理解成:在Actor想通过模拟交互的方式,使用一个batch的经验值更新自己时,它需要收到真正吃到batch的那个时刻的Actor的约束,这样才能在有效利用batch,提升训练速度的基础上,保持训练的稳定。

但是,谨慎的你可能此时又有新的担心了:虽然我们在更新Actor的过程中用 Actorold 做了约束,但如果 Actorold 的约束能力不够,比如说 P(At|St)/Pold(At|St) 还是超出了可接受的范围,那怎么办?

很简单,那就剪裁(clip)它吧!

我们给 P(At|St)/Pold(At|St) 设置一个范围,例如(0.8 ,1.2),也就是如果这个值一旦超过1.2,那就统一变成1.2;一旦小于0.8,那就统一变成0.8。这样就能保证 Actor 和 Actorold 的分布相似性在我们的掌控之内了。此时actor_loss变为:

这时要注意,如果超过变化范围,将 P(At|St)/Pold(At|St) 强制设定为一个常数后,就说明这一部分的loss和Actor模型无关了,而 Advt 这项本身也与Actor无关。所以相当于,在超过约束范围时,我们停止对Actor模型进行更新。

整体代码如下:

    def actor_loss_fn(self, logprobs, old_logprobs, advantages, mask):
        """
        logprobs: 实时计算的,response部分的prob(只有这个是随着actor实时更新而改变的)
        old_logprobs:老策略中,response部分的prob (这个是固定的,不随actor实时更新而改变)
        advantages: 老策略中,response部分每个token对应的优势(这个是固定的,不随actor实时更新而改变)
        mask:老策略中,response部分对应的mask情况这个是固定的,不随actor实时更新而改变)
        
        之所以要引入logprobs计算actor_loss,是因为我们不希望策略每次更新的幅度太大,防止模型训歪
        
        self.cliprange: 默认值是0.2
        """
        ## policy gradient loss
        # -------------------------------------------------------------------------------------
        # 计算新旧策略间的KL散度
        # -------------------------------------------------------------------------------------
        log_ratio = (logprobs - old_logprobs) * mask
        ratio = torch.exp(log_ratio)
        # -------------------------------------------------------------------------------------
        # 计算原始loss和截断loss
        # -------------------------------------------------------------------------------------
        pg_loss1 = -advantages * ratio
        pg_loss2 = -advantages * torch.clamp(ratio, 1.0 - self.cliprange, 1.0 + self.cliprange)
        pg_loss = torch.sum(torch.max(pg_loss1, pg_loss2) * mask) / mask.sum() # 最后是取每个非mask的response token的平均loss作为最终loss
        return pg_loss

(6)Actor loss小结

(1)~(5)中我们一步步树立了actor_loss的改进过程,这里我们就做一个总结吧:

  • 我们已经对Rt进行来改造,使其能够衡量Actor模型是否遵从了Ref模型的约束
  • 我们已经对Advt进行改造,使其不仅考虑了当前时刻的优势,还考虑了未来的优势
  • 我们重复利用了1个batch的数据,使本来只能被用来做1次模型更新的它现在能被用来做ppo_epochs次模型更新。我们使用真正吃了batch,产出经验值的那个时刻的Actor分布来约束ppo_epochs中更新的Actor分布
  • 我们考虑了剪裁机制(clip),在ppo_epochs次更新中,一旦Actor的更新幅度超过我们的控制范围,则不对它进行参数更新。

Critic loss

我们知道,1个batch产出的经验值,不仅被用来更新Actor,还被用来更新Critic。对于Critic loss,我们不再像Actor loss一样给出一个“演变过程”的解读,我们直接来看它最后的设计。

首先,在之前的解说中,你可能有这样一个印象:

  • Vt :Critic对t时刻的总收益的预估,这个总收益包含即时和未来的概念(预估收益)
  • Rt+γ∗Vt+1 :Reward计算出的即时收益 Rt ,Critic预测出的 t+1 及之后时候的收益的折现,这是比 Vt 更接近t时刻真值总收益的一个值(实际收益)

所以,我们的第一想法是:

现在,我们对“实际收益”和“预估收益”都做一些优化。

(1)实际收益优化

我们原始的实际收益为 Rt+γ∗Vt+1 ,但是当我们在actor_loss中引入“优势”的概念时,“优势”中刻画了更为丰富的实时收益信息,所以,我们将实际收益优化为: Advt+Vt

(2)预估收益优化

我们原始的预估收益为 Vt 。
类比于Actor,Critic模型在ppo_epochs的过程中也是不断更新的。所以这个 Vt 可以理解成是 Criticold ,也就是真正吃了batch,参与产出经验的那个时候的Critic产出的收益预测结果。


我们同样想用旧模型去约束新模型,但对于Critic我们采用的约束策略就比较简单了,我们直接看代码,从中可以看出,我们用老 Vt 设计了了一个变动范围,然后用这个变动范围去约束新 Vt

# self.cliprange_value是一个常量
# old_values: 老critic的预测结果
# values:新critic的预测结果
values_clipped = torch.clamp(
            values,
            old_values - self.cliprange_value,
            old_values + self.cliprange_value,
        )

那么最终我们就取实际收益和预估收益的MSE做为loss就好,这里注意,计算实际收益时 Advt,Vt 都是老Critic(真正吃了batch的那个)产出的结果,而预估收益是随着ppo_epochs而变动的。


代码如下:

def critic_loss_fn(self, values, old_values, returns, mask):
        """
        values: 实时critic跑出来的预估预期收益(是变动的,随着ppo epoch迭代而改变)
        old_values:老critic跑出来的预估预期收益(是固定值)
        returns:实际预期收益
        mask:response部分的mask
        
        self.cliprange_value = 0.2
        """
        ## value loss
        # 用旧的value去约束新的value
        values_clipped = torch.clamp(
            values,
            old_values - self.cliprange_value,
            old_values + self.cliprange_value,
        )
        if self.compute_fp32_loss:
            values = values.float()
            values_clipped = values_clipped.float()
        
        # critic模型的loss定义为(预估预期收益-实际预期收益)**2
        vf_loss1 = (values - returns)**2
        vf_loss2 = (values_clipped - returns)**2
        vf_loss = 0.5 * torch.sum(
            torch.max(vf_loss1, vf_loss2) * mask) / mask.sum() # 同样,最后也是把critic loss平均到每个token上
        return vf_loss

PPO优化目标

(1)策略梯度算法:更新幅度大,不稳定

(2)TRPO(信任区域算法):加入KL散度约束条件,但需计算二阶导数,计算量大

(3)PPO(近端策略优化算法):

这里At为优势函数:Critic Model用于估计状态的价值函数 V(st),从而计算策略梯度中的优势值A(t),下面的 r(st,at) 函数就是 RM 模型的输出: 用于计算生成某个token的即时收益 。 下图转换参考:https://zhuanlan.zhihu.com/p/651780908

PPO训练流程

  • Actor Model:要训练的目标语言模型,策略网络
  • Critic Model:预估总收益
  • Reward Model:计算即时收益
  • Reference Model:在RLHF阶段给语言模型增加一些“约束”,防止语言模型训偏

ColossalChat RLFH过程也是非常接近ChatGPT的RLFH过程,RLFH过程主要涉及四个模型分别是Actor、Critic、RM、STF,损失函数也是由三个损失函数组成分别是策略损失、价值损失和 PTX 损失。

ColossalChat RLFH过程

策略损失函数计算:

策略损失计算过程

通过instruction dataset数据训练STF模型,通过计算sft model的logits和actor model(没有经过sft的model)的logits计算kl散度,然后加上reward model的打分变成 reward R奖励值,避免太过偏向reward model加入和sft model的kl散度,同时也避免强化学习将actor模型训歪。

这样做的目的就是避免模型训飞,让模型更新保持在一个小范围内。

价值损失函数计算:

上式R是reward model和sft model计算出来的反馈分数,V(s)是Critic Model输出的价值分数。主要是衡量reward分数和价值函数分数的均方误差。

ptx的损失计算:

计算Actor输出response和输入语料的回答部分的交叉熵损失函数,用来在PPO梯度中加入预训练梯度,以保持语言模型原有性能防止遗忘。这个就是instruct gpt论文中在强化学习中加入预训练梯度以防过度拟合ppo数据带来nlp通用任务能力的下降操作。

总的强化学习损失计算:

为什么RLHF中,PPO需要Critic模型而不是直接使用RewardModel

在强化学习中,PPO(Proximal Policy Optimization)算法是一种基于策略梯度的方法,用于训练强化学习智能体。PPO算法中引入Critic模型的主要目的是为了提供一个价值估计器,用于评估状态或状态动作对的价值,从而辅助策略的更新和优化。

虽然奖励模型(Reward Model)可以提供每个状态或状态动作对的即时奖励信号,但它并不能直接提供对应的价值估计。奖励信号只反映了当前动作的即时反馈,而并没有提供关于在长期时间尺度上的价值信息。

Critic模型的作用是估计状态或状态动作对的长期价值,也称为状态值函数或动作值函数。Critic模型能够学习和预测在当前状态下采取不同动作所获得的累积奖励,它提供了对策略改进的指导。PPO算法使用Critic模型的估计值来计算优势函数,从而调整策略的更新幅度,使得更有利于产生更高长期回报的动作被选择。

另外,Critic模型还可以用于评估不同策略的性能,为模型的评估和选择提供依据。PPO算法中的Actor-Critic架构允许智能体同时学习策略和价值函数,并通过协同训练来提高性能。

因此,在RLHF(Reinforcement Learning from Human Feedback)中,PPO算法需要Critic模型而不是直接使用奖励模型,是为了提供对状态或状态动作对的价值估计,并支持策略的改进和优化。Critic模型的引入可以提供更全面和准确的信息,从而增强算法的训练效果和学习能力。

即时奖励 与 状态动作对的长期价值 的差别是什么?

即时奖励(Immediate Reward)和状态动作对的长期价值(Long-Term Value)代表了强化学习中不同的概念和时间尺度。

即时奖励是指智能体在执行某个动作后立即获得的反馈信号。它通常由环境提供,用于表示当前动作的好坏程度。即时奖励是一种即时反馈,可以指示当前动作的立即结果是否符合智能体的目标。

而状态动作对的长期价值涉及更长时间尺度上的评估,它考虑了智能体在当前状态下选择不同动作所导致的未来回报的累积。长期价值可以表示为状态值函数(State Value Function)或动作值函数(Action Value Function)。

状态值函数(V-function)表示在给定状态下,智能体从该状态开始执行一系列动作,然后按照某个策略进行决策,从而获得的预期累积回报。状态值函数估计了智能体处于某个状态时所能获得的长期价值,反映了状态的优劣程度

动作值函数(Q-function)则表示在给定状态下,智能体选择某个动作后,按照某个策略进行决策,从该状态转移到下一个状态并获得预期累积回报的价值。动作值函数估计了在给定状态下采取不同动作的长期价值,可以帮助智能体选择在每个状态下最优的动作

长期价值考虑了智能体在未来的决策过程中所能获得的累积回报,相比之下,即时奖励只提供了当前动作的即时反馈。长期价值对智能体的决策具有更全面的影响,可以帮助智能体更好地评估当前状态和动作的长期效果,并指导智能体在长期时间尺度上作出更优的决策。

在强化学习中,长期价值的估计对于确定性策略选择和价值优化非常重要,而即时奖励则提供了对当前动作的直接反馈。这两者相互补充,结合起来可以帮助智能体实现更好的决策和学习效果。

PPO中优势函数指什么

在Proximal Policy Optimization(PPO)算法中,优势函数(Advantage Function)用于评估状态-动作对的相对优劣程度。它衡量了执行某个动作相对于平均水平的优劣,即在给定状态下采取某个动作相对于采取平均动作的效果。

优势函数可以用以下方式定义:Advantage(s, a) = Q(s, a) - V(s)

其中,Advantage(s, a)表示在状态 s 下采取动作 a 的优势函数值,Q(s, a) 表示状态动作对 (s, a) 的动作值函数(也称为动作优势函数),V(s) 表示状态值函数。

优势函数的作用在于帮助评估当前动作的相对价值,以便在策略更新过程中确定应采取的动作。通过比较不同动作的优势函数值,可以决定哪些动作是更好的选择。正的优势函数值表示执行的动作比平均水平更好,而负的优势函数值表示执行的动作比平均水平更差。

在PPO算法中,优势函数用于计算策略更新的目标,以便调整策略概率分布来提高优势函数为正的动作的概率,并降低优势函数为负的动作的概率,从而改进策略的性能。

总而言之,优势函数在PPO算法中用于评估状态-动作对的相对优劣,帮助确定应该采取的动作,并在策略更新过程中引导策略向更优的方向调整。

GRPO (Group Relative Policy Optimization)

ORPO偏好优化(Odds Ratio Preference Optimization)

ORPO: Monolithic Preference Optimization without Reference Model

核心: 最大化正样本的生成概率,最小化负样本的生成概率 。相比DPO 【加载2个模型,其中一个推理,另外一个训练,直接在偏好数据上进行训练】,只加载训练模型,直接在偏好数据上进行训练

本文提出的算法ORPO是对SFT的改进,通过修改SFT阶段的损失函数,将类似于DPO中偏好对齐的思想引入到SFT中,提出一种无需奖励模型和参考模型算法。同时,ORPO只有一阶段,不需要像DPO一样需要先SFT再DPO对齐。在众多大模型任务上的实验结果表明,与SFT,DPO等算法相比,ORPO更有优势。

本文提出的算法ORPO是对SFT的改进,修改了SFT阶段的损失函数。同时,与DPO/PPO相比,ORPO将原本分两步进行的过程(SFT+DPO/PPO)合并为一步,更加简洁高效。

现在有许多方法可以使大型语言模型(LLM)与人类偏好保持一致。以人类反馈为基础的强化学习(RLHF)是最早的方法之一,并促成了ChatGPT的诞生,但RLHF的成本非常高。与RLHF相比,DPO、IPO和KTO的成本明显更低,因为它们不需要奖励模型。

虽然DPO和IPO的成本较低,但它们仍需训练两个不同的模型。首先是监督微调(SFT)步骤,即训练模型按指令回答问题,然后使用SFT模型作为初始化和参考,以使模型与人类偏好一致。

ORPO是另一种新的LLM对齐方法,这种方法甚至不需要SFT模型。通过ORPO,LLM可以同时学习回答指令和满足人类偏好。

对于STF,它是在与选择的答案配对的提示上进行训练的。用于sft的数据集可以与偏好优化使用的相同,但不包括”被拒绝”的答案。所以可以直观地认为,应该能够微调一个基础LLM,使其在学习如何回答指令的同时,也学会惩罚和偏好某些答案。

SFT只用正样本更新策略,没有考虑到负样本,会把负样本生成的概率同时拉高,如下图所示:

由于SFT的损失函数对于rejected data没有惩罚项,SFT之后正样本和负样本的生成概率有可能同时上升。

odds定义:模型θ生成 输出序列y的可能性 比 不生成y序列的可能性 比值。

OR为正负样本的odds的比值:

ORPO算法要做的就是最大化OR,即最大化正样本的生成概率,最小化负样本的生成概率,LOR项用了和DPO类似的logsigmoid的形式:

ORPO就是在这个理论基础上建立的,ORPO简单地通过添加负对数似然损失与OR损失(OR代表奇异比)来修改训练损失:

OR损失对被拒绝的答案进行弱惩罚,而对选择的答案进行强有力的奖励。这里包含了一个超参数lambda用于加权OR损失。通过ORPO的损失,模型在学习了SFT期间的内容的同时,也学会了人类偏好。

ORPO需要数千个训练步骤来学习如何区分选择的响应和拒绝的响应。为了获得类似的结果,应该训练ORPO至少2000步,总批大小为64(如论文所述)。

ORPO 已经可以在Hugging Face库上使用了,并且它因为只修改了损失函数,所以可以很好的与现有的Lora方法集成

ORPO是一种单步微调和对准指令llm的新方法。它不需要任何奖励或SFT模型,并且ORPO比DPO和RLHF更简单。根据论文ORPO的性能与DPO相当或略好。但是ORPO需要几千个训练步骤来学习好的和坏的反应之间的区别。

SimPO 简单偏好优化:

算法的核心是将偏好优化目标中的奖励函数与生成指标对齐不需要ref参考模型

SimPO 包含两个主要组件:(1)在长度上归一化的奖励【/|y|】,其计算方式是使用策略模型的奖励中所有 token 的平均对数概率;(2)目标奖励差额 γ ,用以确保获胜和失败响应之间的奖励差超过这个差额 γ 。

DPO 是最常用的离线偏好优化方法之一。DPO 并不会学习一个显式的奖励模型,而是使用一个带最优策略的闭式表达式来对奖励函数 r 进行重新参数化:

其中 π_θ 是策略模型,π_ref 是参考策略(通常是 SFT 模型),Z (x) 是配分函数。通过将这种奖励构建方式整合进 Bradley-Terry (BT) 排名目标,DPO 可使用策略模型而非奖励模型来表示偏好数据的概率,从而得到以下目标:

DPO 的奖励与生成之间的差异。使用 (1) 式作为隐式的奖励表达式有以下缺点:(1) 训练阶段需要参考模型 π_ref,这会带来额外的内存和计算成本;(2) 训练阶段优化的奖励与推理所用的生成指标之间存在差异。具体来说,在生成阶段,会使用策略模型 π_θ 生成一个能近似最大化平均对数似然的序列,定义如下:

在解码过程中直接最大化该指标是非常困难的,为此可以使用多种解码策略,如贪婪解码、波束搜索、核采样和 top-k 采样。此外,该指标通常用于在语言模型执行多选任务时对选项进行排名。在 DPO 中,对于任意三元组 (x, y_w, y_l),满足奖励排名 r (x, y_w) > r (x, y_l) 并不一定意味着满足似然排名:

图片

事实上,在使用 DPO 训练时,留存集中大约只有 50% 的三元组满足这个条件。

构建在长度上归一化的奖励。很自然地,我们会考虑使用 (3) 式中的 p_θ 来替换 DPO 中的奖励构建,使其与引导生成的似然指标对齐。这会得到一个在长度上归一化的奖励:

其中 β 是控制奖励差异大小的常量。该团队发现,根据响应长度对奖励进行归一化非常关键;从奖励公式中移除长度归一化项会导致模型倾向于生成更长但质量更低的序列。这样一来,构建的奖励中就无需参考模型了,从而实现比依赖参考模型的算法更高的内存和计算效率。

SimPO 目标

目标奖励差额。另外,该团队还为 Bradley-Terry 目标引入了一个目标奖励差额项 γ > 0,以确保获胜响应的奖励 r (x, y_w) 超过失败响应的奖励 r (x, y_l) 至少 γ

两个类之间的差额已知会影响分类器的泛化能力。在使用随机模型初始化的标准训练设置中,增加目标差额通常能提升泛化性能。在偏好优化中,这两个类别是单个输入的获胜或失败响应。

在实践中,该团队观察到随着目标差额增大,生成质量一开始会提升,但当这个差额变得过大时,生成质量就会下降。DPO 的一种变体 IPO 也构建了与 SimPO 类似的目标奖励差额,但其整体目标的效果不及 SimPO。

目标。最后,通过将 (4) 式代入到 (5) 式中,可以得到 SimPO 目标:

总结起来,SimPO 采用了与生成指标直接对齐的隐式奖励形式,从而消除了对参考模型的需求。此外,其还引入了一个目标奖励差额 γ 来分离获胜和失败响应

KTO:Kahneman-Tversky Optimisation

特点:

KTO关注的是答案偏离平均水准的程度——比平均好还是坏。所以它的训练数据集是对单个问答的“好/差”标注,而不再是成对数据间谁好谁差(所以用户对LLM结果的点赞或踩就可以当做反馈使用了)。

KTO不需要偏好数据,可以直接利用二元信号标记的数据来训练算法,对于负样本更加敏感。 KTO并不需要一个数据对,只需要对生成的结果进行good/bad的二元标注即可。 【比如:ChatGPT UI 界面会输出两个答案,用户可以选择哪个更好,适用于从生产环境中运行的聊天模型的训练】

实验表明,KTO算法在一定参数范围内能够超过DPO算法,并且KTO可以处理数据正负样本不平衡的情况。同时,在跳过SFT阶段的情况下,直接使用KTO相比于直接使用 DPO,效果有很大提升。在数据正负样本比例失衡/偏好数据有非传递性/偏好数据有噪声/的情况下,使用KTO可能是更好的选择。

KTO 使用 Kahneman-Tversky 人类效用模型,论文提出直接最大化生成效用的 HALO, 而不是最大化偏好的对数可能性。

  • 在1B~30B尺度上与基于偏好的方法的性能相匹配或超过,尽管它只从二进制信号(0或者1)中学习输出是否可取。
  • 没有一个 HALO 普遍优越;
  • 最佳损失取决于最适合给定设置的归纳偏差,经常被忽视的考虑因素。

KTO算法的具体步骤如下:

  1. 定义效用函数:根据前景理论中的效用函数公式,定义一个效用函数,用于计算模型输出相对于参考点的效用。
  2. 计算参考点:根据概率分布Q(X’, Y’ | x, y),计算出一个参考点,用于衡量模型输出的效用。
  3. 计算模型输出的效用:对于每个输入,计算模型输出相对于参考点的收益或损失,然后使用效用函数计算这些收益或损失的效用。
  4. 优化模型参数:优化模型参数以最大化模型输出的总效用。

KTO 损失函数本质是把 pair-wise 公式变成 point-wise 方式,结合了HALOs以及二元信号数据的思想提出使用Kahneman-Tversky 优化的KTO算法:

其中 zo是KL散度项,参考点zo为最优策略下reward的期望值,最终可以推导成KL散度的形式,y’表示任意输出,在实际训练中,Z0表示batch平均水准的程度Z0当前batch里面的样本进行估计得到的,平均 reward,代表不好不坏的居中的结果。 LKTO 就是DPO中推导的reward函数形式。

按照上面的定义估计z0是不切实际的,因为从πθ采样很慢,人类无法感知πθ引起的完整分布。

这个估计是有偏差的,但这是可取的,因为它使我们更接近人类如何构建他们的主观参考点。

实际上KTO相对比DPO差异就两点

  • 对正负样本进行了加权:DPO里面是使用正负样本的reward差值进行sigmoid映射,但是KTO里面使用reward模型与KL散度之间的差异!(说是KL散度,但其实也是bad的log比值数值!不过不是同一个pair
  • 注意:在实践的时候,KL项并不参与反向传播,这其实就跟DPO更相似的。DPO使一个数据对,但是这里把DPO给拆分了,相当于对每一个样本单独进行最大化或最小化了,以及进行加权。另一个作用就是,如果 rKTO(x,y) 的差异与KL散度有足够区别的话,那对应的Loss也就比较小。因此,KTO会更加鼓励差异大的数据对。
  • 但其实我们可以从KTO的目标函数直接看到。由于KTO是分别针对单条数据,如果数据是正样本,那么一定要超过 zo 才会产生预测正确反馈;对于负样本,需要低于 zo才会产生预测正确反馈

KTO和DPO的选择

  • 数据比例:如果数据集是以good/bad形式进行标注,并且数据比例不平衡,那么选择KTO
  • 数据质量:如果你的偏好数据质量高,数据噪声小,那么DPO的效果更好。由于目前公开的数据集中存在的噪声较大,这就能解释为什么KTO的效果会超过DPO了。
  • 理论分析:KTO不会从负样本中学习到很高的反馈,也不会从正样本中学习到很低的反馈(所以对噪声比较鲁棒)

KTO 的工作原理:

  • 如果模型以直接(blunt manner)方式增加了理想示例的奖励,那么 KL 惩罚也会增加,并且不会取得任何进步。这迫使模型准确地了解是什么让输出变得理想,这样就可以增加奖励,同时保持 KL 项持平(甚至减少)。
  • 实际实现中,KL 项是通过当前batch里面的正负样本进行估计得到的可以认为是batch样本的平均水平】,详细 debug KTOTrainer 源代码

对成对偏好数据进行分配

  • 与大多数比对方法一样,DPO 需要一个成对偏好数据集(x, y_w, y_l),够根据一组标准(如有益性或有害性)来标记哪种模型响应更好。
  • 实践过程中,创建这些数据是一项耗时且成本高昂的工作。
  • ContextualAI 提出替代方案,称为 Kahneman-Taversky 优化(KTO),完全根据被标记为「好」或「坏」的样本(例如在聊天 UI 中看到的图标👍或👎)来定义损失函数。这些标签更容易获得, KTO 是一种很有前景的方法,不断更新在生产环境中运行的聊天模型。

与此同时,这些方法都有相应的超参数,其中最重要的是 β ,控制对使用模型的偏好程度的权重。这些方法已经在第三方库(如 huggingface TRL)中实现

KTO 数据集

KTO 不需要成对的偏好数据,实验时直接将 GPT-4 生成的响应归类为「好」标签,将 Llama Chat 13b 的响应视为「坏」标签。

KTO数据集与偏好数据集类似,但不同于给出一个更优的回答和一个更差的回答,KTO数据集对每一轮问答只给出一个 true/false 的 label。 除了 instruction 以及 input 组成的人类最终输入和模型回答 output ,KTO 数据集还需要额外添加一个 kto_tag 列(true/false)来表示人类的反馈。在一轮问答中其格式如下:

[
  {
    "instruction": "人类指令(必填)",
    "input": "人类输入(选填)",
    "output": "模型回答(必填)",
    "kto_tag": "人类反馈 [true/false](必填)"
  }
]

对于上述格式的数据, dataset_info.json 中的 数据集描述 应为:

"数据集名称": {
  "file_name": "data.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "kto_tag": "kto_tag"
  }
}

代码实现:

基于pytorch、deepspeed、transformers代码:https://github.com/PKU-Alignment/align-anything/tree/main/align_anything/trainers/text_to_text

sft训练代码:

def loss(self, sft_batch: SupervisedBatch) -> dict[str, torch.Tensor]:
    """Loss function for supervised finetuning."""
    outputs = self.model(**self.infer_batch(sft_batch))
    return {'loss': outputs.loss}

def train_step(self, sft_batch: SupervisedBatch) -> dict[str, Any]:
    """Performs a single training step."""
    loss = self.loss(sft_batch)['loss']
    self.model.backward(loss)
    self.model.step()

    return {
        'train/loss': loss.item(),
        'train/lr': self.model.optimizer.param_groups[0]['lr'],
    }

dpo训练代码:

https://blog.csdn.net/weixin_43013480/article/details/141370269

# 从 logits(未归一化的概率分布)中,提取 labels 对应类别的对数概率(log probabilities)。
def gather_log_probabilities(
    logits: torch.Tensor,  # size = (B, L, V)
    labels: torch.LongTensor,  # size = (B, L)
) -> torch.Tensor:  # size = (B, L)
    """Gather log probabilities of the given labels from the logits."""
    log_probs = F.log_softmax(logits, dim=-1)  # size = (B, L, V)
    gathered_log_probs = torch.gather(  # size = (B, L, 1)
        log_probs,
        dim=-1,
        index=labels.unsqueeze(dim=-1).to(torch.int64),
    )
    return gathered_log_probs.squeeze(dim=-1)  # size = (B, L)
def compute_log_probs(
    self,
    model: AutoModelForCausalLM,
    batch: PreferenceBatch,
) -> torch.Tensor:
    """Compute log probabilities of given sequences."""
    # 获得所有可能输出的log概率,logits 表示每个 token 位置的 未归一化的概率分布
    logits = model(**self.infer_batch(batch)).logits
    device = logits.device
    input_ids = batch['input_ids']
    #取得每个样本的回复长度,用于截取模型输出
    batch_size = len(batch['meta_info']['response_lens'])
    logprob_list = []
    for idx in range(batch_size):
        response_length = batch['meta_info']['response_lens'][idx]
        # 去除填充 (PAD) token,避免计算无效 token 的概率。
        raw_input_id = strip_pad(input_ids[idx], self.tokenizer.pad_token_id)
        #只保留 回复部分的 logits,丢弃 prompt 部分。 
        logit = logits[idx][-response_length:].unsqueeze(0)
        input_id = raw_input_id[-response_length:].unsqueeze(0)
        #计算对应的better 和worse 序列token 对数概率
        log_p = gather_log_probabilities(logit[:, :-1], input_id[:, 1:])
        logprob_list.append(log_p.squeeze(0))
    # 不同样本的 log_probs 长度不同,使用 pad_sequence 进行 padding,补齐到相同长度。
    return torch.nn.utils.rnn.pad_sequence(
        logprob_list, batch_first=True, padding_value=0.0
    ).to(device)

def loss(  # pylint: disable=too-many-locals
    self,
    batch: PreferenceBatch,
) -> dict[str, torch.Tensor]:
    """Loss function for the DPO algorithm."""
   #计算当前模型 (self.model.module) 在 batch 上的 log 概率。
    sequence_log_probs = self.compute_log_probs(
        self.model.module,
        batch,
    )
# better_sequence_log_probs (用户偏好的回复)
# worse_sequence_log_probs (用户不喜欢的回复)
    (
        better_sequence_log_probs,  # size = (B, L - 1)
        worse_sequence_log_probs,  # size = (B, L - 1)
    ) = sequence_log_probs.chunk(chunks=2, dim=0)
# 计算参考模型 (self.reference_model.module) 的对数概率 (log_probs)。
# reference_model 通常是 原始未优化的模型,作为对比基准。
# torch.no_grad() 表示 不计算梯度,避免影响参考模型。
    with torch.no_grad():
        ref_sequence_log_probs = self.compute_log_probs(  # size = (2 * B, L - 1)
            self.reference_model.module,
            batch,
        )
        ref_better_sequence_log_probs, ref_worse_sequence_log_probs = (
            ref_sequence_log_probs.chunk(chunks=2, dim=0)
        )

    losses = []
    better_sample_rewards = []
    worse_sample_rewards = []

    batch_size = better_sequence_log_probs.size(0)
    for i in range(batch_size):
# 计算 更好/更差回复的总 log 概率(即累加 token 级别 log 概率)。
        better_log_prob = better_sequence_log_probs[i, :].sum(dim=-1)
        worse_log_prob = worse_sequence_log_probs[i, :].sum(dim=-1)
        ref_better_log_prob = ref_better_sequence_log_probs[i, :].sum(dim=-1)
        ref_worse_log_prob = ref_worse_sequence_log_probs[i, :].sum(dim=-1)
# 当前模型比参考模型更偏好 better 回复 的程度。
        better_log_ratio = better_log_prob - ref_better_log_prob
# 当前模型比参考模型更偏好 worse 回复 的程度。
        worse_log_ratio = worse_log_prob - ref_worse_log_prob
# 计算 better 和 worse 的 log 比值差
# 使用 -logsigmoid(x) 计算负对数 sigmoid 损失,优化模型使其更倾向 better 回复。
# logsigmoid 的性质:
# 如果 x 很大,logsigmoid(x) ≈ 0,意味着损失小,模型已经正确偏好 better response。
# 如果 x 很小或负,logsigmoid(x) ≈ x,意味着损失大,模型没有正确区分 better 和 worse,需要优化。
        losses.append(
            -F.logsigmoid(
                self.cfgs.train_cfgs.scale_coeff * (better_log_ratio - worse_log_ratio),
            ),
        )
        better_sample_rewards.append(
            self.cfgs.train_cfgs.scale_coeff * better_log_ratio.detach(),
        )
        worse_sample_rewards.append(self.cfgs.train_cfgs.scale_coeff * worse_log_ratio.detach())
    loss = torch.stack(losses).mean()  # size = ()
    better_sample_reward = torch.stack(better_sample_rewards)  # size = (B,)
    worse_sample_reward = torch.stack(worse_sample_rewards)  # size = (B,)
# 计算 奖励 (reward)、准确率 (accuracy) 和奖励间距 (margin)。
    reward = better_sample_reward + worse_sample_reward  # size = (B,)
    reward_accuracy = (better_sample_reward > worse_sample_reward).float().mean()  # size = ()
    reward_margin = better_sample_reward - worse_sample_reward  # size = (B,)

    return {
        'loss': loss,
        'reward': reward,
        'better_sample_reward': better_sample_reward,
        'worse_sample_reward': worse_sample_reward,
        'reward_accuracy': reward_accuracy,
        'reward_margin': reward_margin,
    }

def train_step(
    self,
    batch: PreferenceBatch,
) -> dict[str, Any]:
    """Perform a single training step for DPO."""
    loss_dict = self.loss(batch=batch)
    loss = loss_dict['loss']
    self.model.backward(loss)
    self.model.step()

    with torch.no_grad():
        reward = loss_dict['reward'].mean()
        better_sample_reward = loss_dict['better_sample_reward'].mean()
        worse_sample_reward = loss_dict['worse_sample_reward'].mean()
        reward_accuracy = loss_dict['reward_accuracy']
        reward_margin = loss_dict['reward_margin'].mean()

        loss = get_all_reduce_mean(loss)
        reward = get_all_reduce_mean(reward)
        better_sample_reward = get_all_reduce_mean(better_sample_reward)
        worse_sample_reward = get_all_reduce_mean(worse_sample_reward)
        reward_accuracy = get_all_reduce_mean(reward_accuracy)
        reward_margin = get_all_reduce_mean(reward_margin)

    return {
        'train/loss': loss.item(),
        'train/reward': reward.item(),
        'train/better_sample_reward': better_sample_reward.item(),
        'train/worse_sample_reward': worse_sample_reward.item(),
        'train/reward_accuracy': reward_accuracy.item(),
        'train/reward_margin': reward_margin.item(),
        'train/lr': self.model.optimizer.param_groups[0]['lr'],
    }

ppo训练代码:

#使用策略模型 (Actor Model) 生成文本,并返回其 input_ids 和 attention_mask。
def actor_step(self, mini_prompt_only_batch: PromptOnlyBatch) -> dict[str, Any]:
    infer_batch = self.infer_batch(mini_prompt_only_batch)
    actor_batch = copy.deepcopy(infer_batch)
    sequences = self.actor_model.module.generate(
        **infer_batch,
        generation_config=self.generation_config,
        synced_gpus=True,
        do_sample=True,
    )
    attention_mask = sequences.not_equal(self.tokenizer.pad_token_id)
    actor_batch['input_ids'] = sequences
    actor_batch['attention_mask'] = attention_mask

    return actor_batch
# 计算奖励值 (reward) 和对抗奖励值 (reward_values)。 
def reward_model_step(self, actor_batch: PromptOnlyBatch) -> dict[str, Any]:
        reward_batch = copy.deepcopy(actor_batch)
        if self.reward_tokenizer is not self.tokenizer:
            reward_tokenize_output = batch_retokenize(
                actor_batch['input_ids'],
                src_tokenizer=self.tokenizer,
                dest_tokenizer=self.reward_tokenizer,
                skip_special_tokens=True,
                device=self.args.device,
            )
            reward_batch['input_ids'] = reward_tokenize_output['input_ids']
            reward_batch['attention_mask'] = reward_tokenize_output['attention_mask']
        reward_infer_batch = self.reward_infer_batch(reward_batch)
        reward_batch['reward'] = self.reward_model(**reward_infer_batch).end_scores.squeeze(dim=-1)
        critic_infer_batch = self.reward_infer_batch(actor_batch)
        scores = self.reward_critic_model(**critic_infer_batch).scores
        reward_batch['reward_values'] = scores.squeeze(dim=-1)[:, :-1]

        return reward_batch
#冻结模型参数,避免影响训练,采样多个 mini-batch,生成文本,计算奖励,计算 log 概率 (log_probs),计算参考模型的 log 概率 (ref_log_probs)
# 经验回放:生成训练数据并计算指标
  @torch.no_grad()
    def rollout(self, prompt_only_batch: PromptOnlyBatch) -> list[dict[str, Any]]:
        """Rollout a batch of experiences."""
        # freeze the model for rolling out
        self.set_train(mode=False)

        total_batch_size = prompt_only_batch['input_ids'].size(0)
        micro_batch_size = int(self.cfgs.train_cfgs.per_device_train_batch_size)
        micro_inference_batches = []
        micro_training_batches = []
        mini_batch = {}
        for i in range(0, total_batch_size, micro_batch_size):

            mini_batch = {
                key: prompt_only_batch[key][i : i + micro_batch_size] for key in prompt_only_batch
            }

            # actor generation
            actor_batch = self.actor_step(mini_batch)
            # reward model and reward critic model scoring
            reward_batch = self.reward_model_step(actor_batch)
            # calculate the log probabilities
            logits = self.actor_model(**actor_batch).logits
            ref_logits = self.actor_reference_model(**actor_batch).logits
            log_probs = gather_log_probabilities(logits[:, :-1], actor_batch['input_ids'][:, 1:])
            ref_log_probs = gather_log_probabilities(
                ref_logits[:, :-1], actor_batch['input_ids'][:, 1:]
            )

            micro_training_batch = {}
            micro_training_batch['prompt_idx'] = mini_batch['input_ids'].size(-1) - 1
            micro_training_batch['log_probs'] = log_probs
            micro_training_batch['ref_log_probs'] = ref_log_probs
            micro_training_batch['reward'] = reward_batch['reward']
            micro_training_batch['reward_values'] = reward_batch['reward_values']

            mini_batch['input_ids'] = reward_batch['input_ids']
            mini_batch['attention_mask'] = actor_batch['attention_mask']
            # add rollout results to the batches
            micro_inference_batches.append(mini_batch)
            micro_training_batches.append(micro_training_batch)

        # unfreeze the model for training
        self.set_train()

        return micro_inference_batches, micro_training_batches

#计算策略梯度损失
# 计算 PPO 损失函数:
# ratios = exp(new_log_probs - old_log_probs)(新旧策略比)。
# 裁剪 ratios 避免策略剧烈变化(PPO 关键)。
# return -masked_mean(surrogate, mask):最大化优势 𝐴𝑡
   
def actor_loss_fn(
        self,
        log_probs: torch.Tensor,  # size = (B, L - S)
        old_log_probs: torch.Tensor,  # size = (B, L - S)
        advantages: torch.Tensor,  # size = (B, L - S)
        mask: torch.BoolTensor,  # size = (B, L - S)
    ) -> torch.Tensor:  # size = ()
        # size = (B, L - S)
        ratios = torch.exp(log_probs - old_log_probs)
        surrogate1 = advantages * ratios
        surrogate2 = advantages * torch.clamp(
            ratios,
            1.0 - self.clip_range_ratio,
            1.0 + self.clip_range_ratio,
        )
        surrogate = torch.minimum(surrogate1, surrogate2)
        return -masked_mean(surrogate, mask)  # size = ()
#  rl_step函数是训练过程中使用强化学习(RL)更新策略的一步。在PPo算法中,rl_step是用来更新策略网络(actor)和价值网络(critic)的一部分。具体来说,这个函数通过计算强化学习损失(actor loss和critic loss),并通过反向传播优化这两个网络。
# reward_critic_model 评估奖励函数的 价值估计,用于计算 优势函数 𝐴𝑡不是直接计算奖励,而是估算未来可能获得的奖励。主要用于时间差分(TD learning)更新策略,类似于 价值函数。

def rl_step(
        self, inference_batch: dict[str, torch.Tensor], training_batch: dict[str, torch.Tensor]
    ) -> dict[str, Any]:
        """Perform a single update step with RL loss."""
        old_log_probs = training_batch['log_probs']
        ref_log_probs = training_batch['ref_log_probs']
        reward = training_batch['reward']
        old_reward_values = training_batch['reward_values']
        start = training_batch['prompt_idx']

        input_ids = inference_batch['input_ids']
        attention_mask = inference_batch['attention_mask']

        sequence_mask = attention_mask[:, 1:]

        with torch.no_grad():
            old_rewards = self.add_kl_divergence_regularization(
                reward,
                old_log_probs,
                ref_log_probs,
                sequence_mask,
            )
            reward_advantages, reward_returns = self.get_advantages_and_returns(
                old_reward_values,
                old_rewards,
                sequence_mask,
                start,
            )

        logits = self.actor_model(**inference_batch, use_cache=False).logits
        log_probs = gather_log_probabilities(logits[:, :-1], input_ids[:, 1:])
        actor_loss = self.actor_loss_fn(
            log_probs[:, start:],
            old_log_probs[:, start:],
            reward_advantages,
            sequence_mask[:, start:],
        )
        self.actor_model.backward(actor_loss)
        self.actor_model.step()

        reward_values = self.reward_critic_model(**inference_batch).scores
        reward_values = reward_values.squeeze(dim=-1)[:, :-1]
        reward_critic_loss = self.critic_loss_fn(
            reward_values[:, start:],
            old_reward_values[:, start:],
            reward_returns,
            sequence_mask[:, start:],
        )
        self.reward_critic_model.backward(reward_critic_loss)
        self.reward_critic_model.step()

        with torch.no_grad():
            mask = sequence_mask[:, start:]
            kl_divergence = ((old_log_probs - ref_log_probs)[:, start:] * mask).sum(dim=-1).mean()
            mean_generated_length = mask.sum(dim=-1).float().mean()
            max_generated_length = mask.sum(dim=-1).float().max()

            reward = reward.mean()
            reward_with_kl_penalty = (old_rewards[:, start:] * mask).sum(dim=-1).mean()
            reward_advantage = masked_mean(reward_advantages, mask)
            reward_return = masked_mean(reward_returns, mask)
            reward_value = masked_mean(reward_values[:, start:], mask)

            actor_loss = get_all_reduce_mean(actor_loss)
            reward_critic_loss = get_all_reduce_mean(reward_critic_loss)
            reward = get_all_reduce_mean(reward)
            reward_with_kl_penalty = get_all_reduce_mean(reward_with_kl_penalty)
            reward_advantage = get_all_reduce_mean(reward_advantage)
            reward_return = get_all_reduce_mean(reward_return)
            reward_value = get_all_reduce_mean(reward_value)
            kl_divergence = get_all_reduce_mean(kl_divergence)
            mean_generated_length = get_all_reduce_mean(mean_generated_length)
            max_generated_length = get_all_reduce_max(max_generated_length)

        dist.barrier()

        return {
            'train/actor_loss': actor_loss.item(),
            'train/reward_critic_loss': reward_critic_loss.item(),
            'train/reward': reward.item(),
            'train/reward_with_kl_penalty': reward_with_kl_penalty.item(),
            'train/reward_advantage': reward_advantage.item(),
            'train/reward_return': reward_return.item(),
            'train/reward_value': reward_value.item(),
            'train/kl_divergence': kl_divergence.item(),
            'train/actor_lr': self.actor_model.optimizer.param_groups[0]['lr'],
            'train/reward_critic_lr': self.reward_critic_model.optimizer.param_groups[0]['lr'],
            'train/mean_generated_length': mean_generated_length.item(),
            'train/max_generated_length': max_generated_length.item(),
        }

    def ptx_step(self, ptx_batch: dict[str, torch.Tensor]) -> dict[str, Any]:
        """Perform a single update step with PTX loss."""
        ptx_loss = self.actor_model(**self.infer_batch(ptx_batch)).loss
        self.actor_model.backward(self.ptx_coeff * ptx_loss)
        self.actor_model.step()
        ptx_loss = get_all_reduce_mean(ptx_loss)
        return {
            'train/ptx_loss': ptx_loss.item(),
        }

    def train(self) -> None:
        """Train the model."""
        self.logger.print('***** Running training *****')

        progress_bar = tqdm(
            total=self.total_training_steps,
            desc=f'Training 1/{self.cfgs.train_cfgs.epochs} epoch',
            position=0,
            leave=True,
            disable=not is_main_process(),
        )

        if self.cfgs.data_cfgs.eval_datasets:
            self.logger.print('\n***** Evaluating at the beginning *****')
            self.eval()

        num_prompt_only_batches = len(self.prompt_only_dataloader)
        num_ptx_batches = len(self.ptx_dataloader)
        num_ptx_replicas = (num_prompt_only_batches + num_ptx_batches - 1) // num_ptx_batches
        for epoch in range(int(self.cfgs.train_cfgs.epochs)):
            for prompt_only_batch, ptx_batch in zip(
                self.prompt_only_dataloader,
                itertools.chain.from_iterable([self.ptx_dataloader] * num_ptx_replicas),
            ):
                inference_batches, training_batches = self.rollout(prompt_only_batch)

                if self.use_ptx:
                    ptx_batches = self.split_ptx_micro_batches(ptx_batch)
                else:
                    ptx_batches = [None for _ in range(len(inference_batches))]
                torch.cuda.empty_cache()

                for _ in range(self.cfgs.train_cfgs.update_iters):
                    for inference_batch, training_batch, ptx_batch in zip(
                        inference_batches, training_batches, ptx_batches
                    ):
                        rl_info = self.rl_step(inference_batch, training_batch)

                        torch.cuda.empty_cache()
                        self.logger.log(rl_info, step=self.global_step)
                        if self.use_ptx:
                            ptx_info = self.ptx_step(ptx_batch)
                            torch.cuda.empty_cache()
                            self.logger.log(ptx_info, step=self.global_step)

                        self.global_step += 1
                        progress_bar.set_description(
                            f'Training {epoch + 1}/{self.cfgs.train_cfgs.epochs} epoch '
                            f'(reward {rl_info["train/reward"]:.4f})',
                        )
                        progress_bar.update(1)

                        if self.global_step % self.cfgs.logger_cfgs.save_interval == 0:
                            self.logger.print(f'Saving checkpoint at step {self.global_step} ...')
                            self.save(tag=self.global_step)
                            self.logger.print('Checkpoint saved.')

                        if (
                            self.cfgs.data_cfgs.eval_datasets
                            and self.cfgs.train_cfgs.eval_strategy == 'steps'
                            and self.global_step % self.cfgs.train_cfgs.eval_interval == 0
                        ):
                            self.logger.print(
                                f'\n***** Evaluating at step {self.global_step} *****',
                            )
                            self.eval()

RM奖励模型训练代码:

    def loss(
        self,
        batch: PreferenceBatch,
    ) -> dict[str, torch.Tensor]:
        """Loss function for the reward model."""
        (
            better_input_ids,  # size = (B, L)
            worse_input_ids,  # size = (B, L)
        ) = batch[
            'input_ids'
        ].chunk(chunks=2, dim=0)
        assert better_input_ids.size(0) == worse_input_ids.size(0), 'batch size mismatch!'

# scores:一般来说,这代表模型在每个时间步骤(或输入分段)上的奖励得分,通常是一个形状为 (B, L, 1) 的张量,其中 B 是批量大小,L 是输入序列的长度,1 是奖励得分的维度。
#end_scores:通常表示输入序列的结束阶段的奖励得分,这可能是在整个序列处理完成后,模型计算出的最终奖励。
        output = self.model(**self.infer_batch(batch))
        scores = output.scores
        end_scores = output.end_scores
        higher_rewards, lower_rewards = scores.squeeze(dim=-1).chunk(chunks=2, dim=0)
        higher_end_reward, lower_end_reward = end_scores.squeeze(dim=-1).chunk(chunks=2, dim=0)

        loss = -F.logsigmoid(higher_end_reward - lower_end_reward).mean()

        if self.cfgs.train_cfgs.regularization > 0.0:
            loss = (
                loss
                + self.cfgs.train_cfgs.regularization
                * torch.stack([lower_end_reward, higher_end_reward]).square().mean()
            )

        accuracy = (higher_end_reward > lower_end_reward).float().mean()  # size = ()
        return {
            'loss': loss,  # size = ()
            'higher_end_reward': higher_end_reward,  # size = (B,)
            'lower_end_reward': lower_end_reward,  # size = (B,)
            'higher_rewards': higher_rewards,  # size = (B, L)
            'lower_rewards': lower_rewards,  # size = (B, L)
            'accuracy': accuracy,  # size = ()
        }

    def train_step(
        self,
        batch: PreferenceBatch,
    ) -> dict[str, Any]:
        """Perform a single training step."""
        loss_dict = self.loss(batch)
        loss = loss_dict['loss']
        self.model.backward(loss)
        self.model.step()

        accuracy = loss_dict['accuracy']

        loss = get_all_reduce_mean(loss)
        accuracy = get_all_reduce_mean(accuracy)

        return {
            'train/loss': loss.item(),
            'train/accuracy': accuracy.item(),
            'train/lr': self.model.optimizer.param_groups[0]['lr'],
        }

orpo 训练代码:

相关介绍:https://github.com/Paul33333/ORPO https://zhuanlan.zhihu.com/p/688583797

# 从 logits(未归一化的概率分布)中,提取 labels 对应类别的对数概率(log probabilities)。
def gather_log_probabilities(
    logits: torch.Tensor,  # size = (B, L, V)
    labels: torch.LongTensor,  # size = (B, L)
) -> torch.Tensor:  # size = (B, L)
    """Gather log probabilities of the given labels from the logits."""
    log_probs = F.log_softmax(logits, dim=-1)  # size = (B, L, V)
    gathered_log_probs = torch.gather(  # size = (B, L, 1)
        log_probs,
        dim=-1,
        index=labels.unsqueeze(dim=-1).to(torch.int64),
    )
    return gathered_log_probs.squeeze(dim=-1)  # size = (B, L)

# compute_log_probs 的作用是计算给定序列的 log 概率(对数概率),主要用于评估语言模型(LLM)的生成质量。
def compute_log_probs(
        self,
        model: AutoModelForCausalLM,
        batch: PreferenceBatch,
    ) -> torch.Tensor:
        """Compute log probabilities of given sequences."""
        logits = model(**self.infer_batch(batch)).logits
        device = logits.device
        input_ids = batch['input_ids']
        batch_size = len(batch['meta_info']['response_lens'])
        logprob_list = []
        for idx in range(batch_size):
            response_length = batch['meta_info']['response_lens'][idx]  # for the eos token
            logit = logits[idx][-response_length:].unsqueeze(0)
            input_id = input_ids[idx][-response_length:].unsqueeze(0)
# logit[:, :-1]取 response 部分的 logits,去掉最后一个 token(因为 logits 预测的是下一个 token)input_id[:, 1:]: 取 response 部分的 token IDs,从第二个 token 开始(因为 log_probs 计算的是下一个 token 概率)。
作用:计算 response 部分每个 token 的 log 概率(对 logit 的 softmax 取对数)。
            log_p = gather_log_probabilities(logit[:, :-1], input_id[:, 1:]) 
            logprob_list.append(log_p.squeeze(0))
#pad填充,返回张量形状 (B, max_L_resp)
        return torch.nn.utils.rnn.pad_sequence(
            logprob_list, batch_first=True, padding_value=0.0
        ).to(device)
class ORPOTrainer(DPOTrainer):

    def loss(  # pylint: disable=too-many-locals
        self,
        batch: PreferenceBatch, # size = (2*B, L)
    ) -> dict[str, torch.Tensor]:
        """Loss function for the ORPO algorithm."""
        sequence_log_probs = self.compute_log_probs(
            self.model.module,
            batch,
        )
        (
            better_sequence_log_probs,  # size = (B, L - 1)
            worse_sequence_log_probs,  # size = (B, L - 1)
        ) = sequence_log_probs.chunk(chunks=2, dim=0)

        losses = []
        better_sample_rewards = []
        worse_sample_rewards = []

        better_input_ids, worse_input_ids = batch['input_ids'].chunk(chunks=2, dim=0)
        better_attention_mask, worse_attention_mask = batch['attention_mask'].chunk(chunks=2, dim=0)

        batch_size = better_input_ids.size(0)
#diverge_index 代表 better 和 worse 输入序列开始不同的位置:diverge_index,即它之后的 token 是模型生成的部分。
        for i in range(batch_size):
            if torch.all(torch.eq(better_input_ids[i], worse_input_ids[i])).item():
                continue
            better_end_index = better_attention_mask[i].nonzero()[-1].squeeze().item()
            worse_end_index = worse_attention_mask[i].nonzero()[-1].squeeze().item()
            diverge_index = (
                (better_input_ids[i] != worse_input_ids[i]).nonzero()[0].squeeze().item()
            )
            assert 0 <= diverge_index <= better_end_index, 'diverge index is out of range!'
            assert 0 <= diverge_index <= worse_end_index, 'diverge index is out of range!'
# better_seq_slice 和 worse_seq_slice 取从 diverge_index 开始到序列结束的部分(即模型生成的 token)。
            better_seq_slice = slice(diverge_index, better_end_index + 1)
            worse_seq_slice = slice(diverge_index, worse_end_index + 1)
            better_seq_length = better_end_index + 1
            worse_seq_length = worse_end_index + 1

            # size = ()
# better_log_prob: 计算 better 部分的总 log 概率。
# worse_log_prob: 计算 worse 部分的总 log 概率。
# 计算 对数比率(log ratio):
            better_log_prob = better_sequence_log_probs[i, better_seq_slice].sum(dim=-1)
            worse_log_prob = worse_sequence_log_probs[i, worse_seq_slice].sum(dim=-1)
            better_log_ratio = better_log_prob / better_seq_length
            worse_log_ratio = worse_log_prob / worse_seq_length
# 计算 ORPO 的 odds ratio loss:
            log_odds = (better_log_ratio - worse_log_ratio) - (
                torch.log1p(-torch.exp(better_log_ratio)) - torch.log1p(-torch.exp(worse_log_ratio))
            )
#  better 的 log 概率明显高于 worse,从而优化生成策略。
            odds_ratio_loss = -F.logsigmoid(log_odds)
# 最终损失
            sft_loss = -better_log_ratio
            losses.append(
                sft_loss + self.cfgs.train_cfgs.scale_coeff * odds_ratio_loss,
            )
            better_sample_rewards.append(
                self.cfgs.train_cfgs.scale_coeff * better_log_ratio.detach(),
            )
            worse_sample_rewards.append(self.cfgs.train_cfgs.scale_coeff * worse_log_ratio.detach())

        loss = torch.stack(losses).mean()  # size = ()
        better_sample_reward = torch.stack(better_sample_rewards)  # size = (B,)
        worse_sample_reward = torch.stack(worse_sample_rewards)  # size = (B,)
        reward = better_sample_reward + worse_sample_reward  # size = (B,)
        reward_accuracy = (better_sample_reward > worse_sample_reward).float().mean()  # size = ()
        reward_margin = better_sample_reward - worse_sample_reward  # size = (B,)

        return {
            'loss': loss,
            'reward': reward,
            'better_sample_reward': better_sample_reward,
            'worse_sample_reward': worse_sample_reward,
            'reward_accuracy': reward_accuracy,
            'reward_margin': reward_margin,
        }


def main():
    # setup distribution training
    deepspeed.init_distributed()
    current_device = get_current_device()
    torch.cuda.set_device(current_device)

    # read default configs from the yaml file
    task = os.path.join('text_to_text', 'orpo')
    dict_cfgs, ds_cfgs = read_cfgs(mode='train', task=task)

    # get custom configs from command line
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    _, unparsed_args = parser.parse_known_args()
    keys = [k[2:] for k in unparsed_args[1::2]]
    values = list(unparsed_args[2::2])
    unparsed_args = dict(zip(keys, values))
    for k, v in unparsed_args.items():
        dict_cfgs = update_dict(dict_cfgs, custom_cfgs_to_dict(k, v))

    # setup training
    cfgs = dict_to_namedtuple(dict_cfgs)
    seed_everything(cfgs.train_cfgs.seed)

    # finetune the model
    trainer = ORPOTrainer(cfgs=cfgs, ds_cfgs=ds_cfgs)
    trainer.train()
    trainer.save()

SimPO训练代码:

https://blog.csdn.net/weixin_43013480/article/details/141370269

# compute_log_probs 的作用是计算给定序列的 log 概率(对数概率),主要用于评估语言模型(LLM)的生成质量。

def compute_log_probs(
        self,
        model: AutoModelForCausalLM,
        batch: PreferenceBatch,
    ) -> torch.Tensor:
        """Compute log probabilities of given sequences."""
        logits = model(**self.infer_batch(batch)).logits
        device = logits.device
        input_ids = batch['input_ids']
        batch_size = len(batch['meta_info']['response_lens'])
        logprob_list = []
        for idx in range(batch_size):
            response_length = batch['meta_info']['response_lens'][idx]
            raw_input_id = strip_pad(input_ids[idx], self.tokenizer.pad_token_id)
            logit = logits[idx][-response_length:].unsqueeze(0)
            input_id = raw_input_id[-response_length:].unsqueeze(0)
            log_p = gather_log_probabilities(logit[:, :-1], input_id[:, 1:])
            logprob_list.append(log_p.squeeze(0))
        return torch.nn.utils.rnn.pad_sequence(
            logprob_list, batch_first=True, padding_value=0.0
        ).to(device)
class SimPOTrainer(DPOTrainer):

    def loss(  # pylint: disable=too-many-locals
        self,
        batch: PreferenceBatch,
    ) -> dict[str, torch.Tensor]:
        """Loss function for the SimPO algorithm."""
        sequence_log_probs = self.compute_log_probs(
            self.model.module,
            batch,
        )
# 使用 chunk 将 sequence_log_probs 按照第0维(批次维度)进行切分。将批次数据分为两部分:一部分对应 "更好"(better_sequence_log_probs),另一部分对应 "更差"(worse_sequence_log_probs)。每部分的大小为 (B, L - 1),B 是批次大小,L 是序列长度。  L-1 是为了删除最后的 <eos>
        (
            better_sequence_log_probs,  # size = (B, L - 1)
            worse_sequence_log_probs,  # size = (B, L - 1)
        ) = sequence_log_probs.chunk(chunks=2, dim=0)

        losses = []
        better_sample_rewards = []
        worse_sample_rewards = []

        better_input_ids, worse_input_ids = batch['input_ids'].chunk(chunks=2, dim=0)
        better_attention_mask, worse_attention_mask = batch['attention_mask'].chunk(chunks=2, dim=0)

        batch_size = better_input_ids.size(0)
        for i in range(batch_size):
#检查当前样本的 "更好" 和 "更差" 部分的 input_ids 是否相同。如果相同,跳过这个样本,因为它们对比不出差异。
            if torch.all(torch.eq(better_input_ids[i], worse_input_ids[i])).item():
                continue

#分别计算 "更好" 和 "更差" 样本的结束位置(通过 attention_mask 中的非零元素位置来确定)。
            better_end_index = better_attention_mask[i].nonzero()[-1].squeeze().item()
            worse_end_index = worse_attention_mask[i].nonzero()[-1].squeeze().item()
            better_input_length = better_end_index + 1
            worse_input_length = worse_end_index + 1
# diverge_index 是 "更好" 和 "更差" 样本之间的第一个差异位置。
            diverge_index = (
                (better_input_ids[i] != worse_input_ids[i]).nonzero()[0].squeeze().item()
            )
            assert 0 <= diverge_index <= better_end_index, 'diverge index is out of range!'
            assert 0 <= diverge_index <= worse_end_index, 'diverge index is out of range!'
#根据 diverge_index 进行切片,获取差异区域的对数概率。
#better_log_prob 和 worse_log_prob 是对应于 "更好" 和 "更差" 样本的对数概率的总和。
            better_seq_slice = slice(diverge_index, better_end_index + 1)
            worse_seq_slice = slice(diverge_index, worse_end_index + 1)
# 计算损失和奖励
            better_log_prob = better_sequence_log_probs[i, better_seq_slice].sum(dim=-1)
            worse_log_prob = worse_sequence_log_probs[i, worse_seq_slice].sum(dim=-1)
#在长度上归一化的奖励【/|y|】,其计算方式是使用策略模型的奖励中所有 token 的平均对数概率;
            better_log_ratio = better_log_prob / better_input_length
            worse_log_ratio = worse_log_prob / worse_input_length
#目标奖励差额γ,用以确保获胜和失败响应之间的奖励差超过这个差额γ
            losses.append(
                -F.logsigmoid(
                    self.cfgs.train_cfgs.scale_coeff * (better_log_ratio - worse_log_ratio)
                    - self.cfgs.train_cfgs.gamma,
                ),
            )
            better_sample_rewards.append(
                self.cfgs.train_cfgs.scale_coeff * better_log_ratio.detach(),
            )
            worse_sample_rewards.append(self.cfgs.train_cfgs.scale_coeff * worse_log_ratio.detach())
        loss = torch.stack(losses).mean()  # size = ()
        better_sample_reward = torch.stack(better_sample_rewards)  # size = (B,)
        worse_sample_reward = torch.stack(worse_sample_rewards)  # size = (B,)
        reward = better_sample_reward + worse_sample_reward  # size = (B,)
        reward_accuracy = (better_sample_reward > worse_sample_reward).float().mean()  # size = ()
        reward_margin = better_sample_reward - worse_sample_reward  # size = (B,)

        return {
            'loss': loss,
            'reward': reward,
            'better_sample_reward': better_sample_reward,
            'worse_sample_reward': worse_sample_reward,
            'reward_accuracy': reward_accuracy,
            'reward_margin': reward_margin,
        }

KTO训练代码:

#  创建 不匹配的提示-回答对:错位传入批次(batch)中的 answer_input_ids 和 answer_attention_mask 数据,以创建不匹配的提示-回答对。获取当前索引前一个样本作为回应(response)。如果当前索引是 0,则取最后一个样本作为回应。这是为了创建“不匹配”的数据对,即提示和回应不一定是成对的。
class UnmatchedSupervisedDataset(SupervisedDataset):

    def preprocess(
        self, raw_sample_for_prompt: dict[str, Any], raw_sample_for_response: dict[str, Any]
    ) -> SupervisedSample:
        return_dict = {}
        formatted_text, _ = self.template.format_unmatched_supervised_sample(
            raw_sample_for_prompt, raw_sample_for_response
        )
        return_dict['input_ids'] = self.tokenize(formatted_text)

        return return_dict

    def __getitem__(self, index: int) -> dict[str, torch.Tensor]:
        """Get a tokenized data sample by index."""
        raw_sample_for_prompt = self.raw_data[index]
        if index == 0:
            raw_sample_for_response = self.raw_data[-1]
        else:
            raw_sample_for_response = self.raw_data[index - 1]
        data = self.preprocess(raw_sample_for_prompt, raw_sample_for_response)
        return data

    def get_collator(self) -> Callable[[list[dict[str, torch.Tensor]]], dict[str, torch.Tensor]]:
        return UnmatchedSupervisedCollator(self.tokenizer.pad_token_id)

class KTOTrainer(DPOTrainer):

# 计算kl散度:通过计算当前模型(self.model.module)和参考模型(self.reference_model.module)之间的 KL 散度来比较它们的概率分布
# 选择最后一个 batch 的 KL 值可能只是实现上的简化。实际中,计算所有 batch 的 KL 散度并取平均,或者采取其他更复杂的策略,可能会增加额外的计算负担,而选择最后一个 batch 的 KL 值是一种更直接、简便的实现方式。
def compute_kl(self):
    random_dataset = UnmatchedSupervisedDataset(
        path=self.cfgs.data_cfgs.train_datasets,
        template=self.train_template,
        tokenizer=self.tokenizer,
        processor=self.processor,
        name=self.cfgs.data_cfgs.train_name,
        size=self.cfgs.data_cfgs.train_size,
        split=self.cfgs.data_cfgs.train_split,
        data_files=self.cfgs.data_cfgs.train_data_files,
        optional_args=self.cfgs.data_cfgs.train_optional_args,
    )
    seed = torch.randint(0, 100000, (1,)).item()
    torch.manual_seed(seed)
    self.random_dataloader = DataLoader(
        random_dataset,
        collate_fn=random_dataset.get_collator(),
        sampler=DistributedSampler(random_dataset, shuffle=True),
        batch_size=self.cfgs.train_cfgs.per_device_kl_batch_size,
    )
    for batch in self.random_dataloader:
        log_probs = self.compute_log_probs(  # size = (2 * B, L - 1)
            self.model.module,
            batch=batch,
        )
        ref_log_probs = self.compute_log_probs(  # size = (2 * B, L - 1)
            self.reference_model.module,
            batch=batch,
        )
        kl = (log_probs - ref_log_probs).mean()

        self.kl = max(kl, 0)
# 此方法是 DPO (Direct Preference Optimization) 算法的核心部分。它计算了在当前模型和参考模型之间的对比损失
    def loss(  # pylint: disable=too-many-locals
        self,
        batch: PreferenceBatch,
    ) -> dict[str, torch.Tensor]:
        """Loss function for the DPO algorithm."""
        sequence_log_probs = self.compute_log_probs(
            self.model.module,
            batch,
        )
        (
            better_sequence_log_probs,  # size = (B, L - 1)
            worse_sequence_log_probs,  # size = (B, L - 1)
        ) = sequence_log_probs.chunk(chunks=2, dim=0)

        with torch.no_grad():
            ref_sequence_log_probs = self.compute_log_probs(  # size = (2 * B, L - 1)
                self.reference_model.module,
                batch,
            )
            ref_better_sequence_log_probs, ref_worse_sequence_log_probs = (
                ref_sequence_log_probs.chunk(chunks=2, dim=0)
            )

        losses = []
        better_sample_rewards = []
        worse_sample_rewards = []

        better_input_ids, worse_input_ids = batch['input_ids'].chunk(chunks=2, dim=0)
        better_attention_mask, worse_attention_mask = batch['attention_mask'].chunk(chunks=2, dim=0)

        batch_size = better_input_ids.size(0)
        for i in range(batch_size):
            if torch.all(torch.eq(better_input_ids[i], worse_input_ids[i])).item():
                continue
            better_end_index = better_attention_mask[i].nonzero()[-1].squeeze().item()
            worse_end_index = worse_attention_mask[i].nonzero()[-1].squeeze().item()
            diverge_index = (
                (better_input_ids[i] != worse_input_ids[i]).nonzero()[0].squeeze().item()
            )
            assert 0 <= diverge_index <= better_end_index, 'diverge index is out of range!'
            assert 0 <= diverge_index <= worse_end_index, 'diverge index is out of range!'

            better_seq_slice = slice(diverge_index, better_end_index + 1)
            worse_seq_slice = slice(diverge_index, worse_end_index + 1)

            better_log_prob = better_sequence_log_probs[i, better_seq_slice].sum(dim=-1)
            worse_log_prob = worse_sequence_log_probs[i, worse_seq_slice].sum(dim=-1)
            ref_better_log_prob = ref_better_sequence_log_probs[i, better_seq_slice].sum(dim=-1)
            ref_worse_log_prob = ref_worse_sequence_log_probs[i, worse_seq_slice].sum(dim=-1)
            better_log_ratio = better_log_prob - ref_better_log_prob
            worse_log_ratio = worse_log_prob - ref_worse_log_prob

# 计算loss,kl值作为基准
            losses.append(
                self.cfgs.train_cfgs.scale_better
                * (1 - F.sigmoid(self.cfgs.train_cfgs.scale_coeff * (better_log_ratio - self.kl)))
                - self.cfgs.train_cfgs.scale_worse
                * (1 - F.sigmoid(self.cfgs.train_cfgs.scale_coeff * (self.kl - worse_log_ratio))),
            )
            better_sample_rewards.append(
                self.cfgs.train_cfgs.scale_coeff * better_log_ratio.detach(),
            )
            worse_sample_rewards.append(self.cfgs.train_cfgs.scale_coeff * worse_log_ratio.detach())
        loss = torch.stack(losses).mean()  # size = ()
        better_sample_reward = torch.stack(better_sample_rewards)  # size = (B,)
        worse_sample_reward = torch.stack(worse_sample_rewards)  # size = (B,)
        reward = better_sample_reward + worse_sample_reward  # size = (B,)
        reward_accuracy = (better_sample_reward > worse_sample_reward).float().mean()  # size = ()
        reward_margin = better_sample_reward - worse_sample_reward  # size = (B,)

        return {
            'loss': loss,
            'reward': reward,
            'better_sample_reward': better_sample_reward,
            'worse_sample_reward': worse_sample_reward,
            'reward_accuracy': reward_accuracy,
            'reward_margin': reward_margin,
        }
#执行训练步骤:这个方法在每一个训练步中计算并反向传播损失。它更新模型参数并计算并返回训练信息。
#奖励计算:通过 reward、better_sample_reward 和 worse_sample_reward 等指标来衡量模型的性能。
#全局平均:get_all_reduce_mean() 用于分布式训练,确保在多个设备上计算的值被平均,以保证训练的一致性。
def train_step(self, batch: PreferenceBatch) -> dict[str, Any]:
    """Perform a single training step for KTO."""
    loss_dict = self.loss(batch=batch)
    loss = loss_dict['loss']
    self.model.backward(loss)
    self.model.step()

    with torch.no_grad():
        reward = loss_dict['reward'].mean()
        better_sample_reward = loss_dict['better_sample_reward'].mean()
        worse_sample_reward = loss_dict['worse_sample_reward'].mean()
        reward_accuracy = loss_dict['reward_accuracy']
        reward_margin = loss_dict['reward_margin'].mean()

    loss = get_all_reduce_mean(loss)
    reward = get_all_reduce_mean(reward)
    better_sample_reward = get_all_reduce_mean(better_sample_reward)
    worse_sample_reward = get_all_reduce_mean(worse_sample_reward)
    reward_accuracy = get_all_reduce_mean(reward_accuracy)
    reward_margin = get_all_reduce_mean(reward_margin)

    return {
        'train/loss': loss.item(),
        'train/reward': reward.item(),
        'train/better_sample_reward': better_sample_reward.item(),
        'train/worse_sample_reward': worse_sample_reward.item(),
        'train/reward_accuracy': reward_accuracy.item(),
        'train/reward_margin': reward_margin.item(),
        'train/lr': self.model.optimizer.param_groups[0]['lr'],
    }

相关论文:

  • KTO,Kahneman-Tversky 优化,参阅论文《KTO: Model alignment as prospect theoretic optimization》。
  • DRO,直接奖励优化,参阅论文《Offline regularised reinforcement learning for large language models alignment》。
  • SimPO,简单偏好优化,参阅论文《SimPO: Simple preference optimization with a reference-free reward》