英伟达显卡监控工具nvtop & 深度学习cuda+pytorch安装教程

背景

在用英伟达显卡做深度学习训练或推理时,我们常用nvidia-smi指令来查看显卡的使用情况,如图所示

这种方法可以看出每张显卡内存和GPU利用率的实时情况,但看不出历史数据和变化曲线,这个时候就需要用到nvtop了。

Nvtop代表NVidia TOP,这是用于NVIDIA GPU的任务监视器。它可以处理多个GPU,并以熟悉的方式打印有关它们的信息。如图所示,很直观的显示了每张显卡的内存、GPU利用率曲线。本文对该工具的安装使用进行介绍。

1 安装方法

在Ubuntu disco (19.04) / Debian buster (stable)系统中,可以直接使用apt安装

sudo apt install nvtop

如果是在旧的系统,如ubuntu16.04等,则需要通过源码安装,方法如下

# 安装依赖sudo apt install cmake libncurses5-dev libncursesw5-dev git # 下载源码git clone https://github.com/Syllo/nvtop.gitmkdir -p nvtop/build && cd nvtop/buildcmake .. # 如果报错"Could NOT find NVML (missing: NVML_INCLUDE_DIRS)"# 则执行下边的语句,否则跳过cmake .. -DNVML_RETRIEVE_HEADER_ONLINE=True # 编译makesudo make install 

2 使用方法

安装完之后,可以执行nvtop -h来查看使用方法,介绍的很详细了,如果现实全部信息,直接nvtop就可以现实出我们上边的结果

nvtop version 1.0.0Available options:  -d --delay        : Select the refresh rate (1 == 0.1s)  -v --version      : Print the version and exit  -s --gpu-select   : Column separated list of GPU IDs to monitor  -i --gpu-ignore   : Column separated list of GPU IDs to ignore  -p --no-plot      : Disable bar plot  -C --no-color     : No colors  -N --no-cache     : Always query the system for user names and command line information  -f --freedom-unit : Use fahrenheit  -E --encode-hide  : Set encode/decode auto hide time in seconds (default 30s, negative = always on screen)  -h --help         : Print help and exit

CUDA+PYTORCH安装教程:

环境安装

多模态|BLIP 、CoCa and BeiTv

BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

代码: https://github.com/salesforce/BLIP

本文是 ALBEF 原班人马做的,基本可以看做吸收了 VLMo 思想的 ALBEF。训练的 loss 和技巧都与 ALBEF 一致,属于 ALBEF 的后续工作。

本文motivation主要有两个:一是之前多模态预训练模型结构要么是基于编码器,不能直接用于生成任务,要么是基于编码解码器,在检索类任务上不方便,本文设计的结构包含单模态编码器、视觉指导文本编码器、视觉指导文本解码器,可以方便地用对比学习、ITM(Image-Text Matching ( ITM ): 图文匹配任务,针对的是图文交互流,即判断当前pair是不是匹配(就是个分类任务))、LM(生成式任务)三个预训练任务训练不同的模块,也容易迁移到各种下游任务中;二是之前的很多工作通过扩充了网上搜集的图文对的预训练数据(GCC、SBU、CC12M),提高了模型效果,但忽略了其中有很多不对齐的噪声情况,本文用一个boostrapping的方法,用captioner为网络图片生成描述,用filter过滤掉不配对的数据,从而降低噪声,更高效地利用网络上的数据。

关键的改进:

1. 模型结构上整合了 ALBEF 和和 VLMo。VLMo 参数共享,但是不存在单独编码器;ALBEF 存在单独编码器但是部分参数不共享。这篇论文存在单独的 vision encoder 和 text encoder。多模态的参数是以 cross-attention 模块插入到文本编码器实现的,cross-attention 模块享受文本编码器的参数(可以看 col 2 和 col3)

2. 增加了解码器(参考 col 4),为了做生成任务。解码器拿到视觉特征和未掩码的语言特征,过一个 casual self-attention 层,做 GPT 用的那种 lm 任务。这里区别于 MLM 的那种 mask 机制,是通过 causal self-attention 来实现因果推理的,我此时还不熟悉这个过程。

3. 除了上面的主要部分,还有一个重要的部分是利用训练好的模型生成伪标签。将训练好的模型里的不同的部分拿出来在 COCO 上稍微微调一下,decoder 部分可以生成文本,算 ITM loss 的那个模块可以做 image-text pair 的过滤,通过输出打分、置信度的方式。在实验中,BLIP 的解码能力似乎很强,用这种范式生成的文本不仅人看着觉得不错,用于自训练后也可以涨点 2-3,非常显着。

   一个例子是 stable diffusion 的官方博文里提到了,他们在做微调时,会遇到数据集只有图片没有 caption 的情况,比如 pokeman 数据。他们用 BLIP 来做caption生成,然后微调 stable diffusion 发现效果很好。

   另一个例子是知名的开源多模态数据集 LAION,他们也用了 BLIP 来辅助制作数据集。他们的过程在官网公布了,可以参考。

总结:个人感觉模型部分的改进可能有用可能没有用,但是解码器输出的 caption 确实是不错。以至于很多下游任务都拿 BLIP 来生成 caption。

CoCa

Contrastive Captioners are Image-Text Foundation Models

代码: https://github.com/lucidrains/CoCa-pytorch

它也是 ALBEF 的后续工作,模型非常像。区别在于:

1. 图像用了 attentional pooling,这在本文的实验中有效

2. 去掉了 ITM loss,目的是加快训练,原本文本需要 forward 2-3 次,去掉 ITM loss 之后只需要 forward 一次就可以了。在 ALBEF 中,ITM 需要完整的 text,而 MLM 需要掩码,所以是两次输入。在 BLIP 中,ITC 一次,ITM 因为在文本模型中插入了新的模块,所以得单独做前向。而 LM 因为用了既多了新的模块又得用 causal self-attention 所以又得单独做一次。在 CoCa 中,为了完成 captioning loss 和 ITC loss,只需要做一次前向即可。GPT 中把 cls-token 放在最后面就可以得到全局表征来做 ITC loss 了。

简单快速的方法可以有效地 scale,而我们知道复杂的模型设计、loss 设计经常不如简单地放大模型、增加数据有效。参考凯明的 FLYP。

这种画图的方式很不错,很直观。可以参考,以后也画成这样。

总结:

简单有效的结构设计,我对 CoCa 的印象是简单有效。它的峰值性能我没有感觉很炸裂,可能是模型、数据 scale 之后自然的结果。但是它的 zero-shot 性能让我印象很深刻,在 imagenet 上微调不微调的差距很小,这一点非常非常关键。

读到 coca,我对多模态的疑问还有两点:

1. mixture of experts 的结构没有在本文中得到应用,但我感觉是个相当有前途的结构

2. 双向的生成 loss 还是没人做,谁说只能图像辅助文本?

BeiTv

(BEiT-3) Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks

论文的卖点是大一统。在 introduction 章节详细介绍了大一统指的是统一模型、loss 和数据。我觉得可以简单地概括为:用统一的 multi-way transformer (mixture of experts ) 架构和单个 masked modeling loss,将任意模态看做是同一个模态来建模。

具体而言,它指的是在将任意模态输入网络后,都表现为 list of tokens,直接将它们看做是相同的模态来做 masked modeling 就好了。如果想要拿过去做下游任务的话,直接将需要的那部分模型拿出来即可。比如做视觉任务就拿视觉模型,做语言任务就拿语言模型。如果是做多模态任务,可以灵活地模拟不同的需求,比如:1. 做生成任务可以拿多模态部分的参数出来 2. 做图文检索可以单独取出视觉部分和语言部分来模拟 CLIP。不仅仅是能做任意任务,还继承了前作的优点,比如 CLIP 这种弱跨模态交互带来的计算效率的优势。

总结:

Neural Corpus Indexer—文档检索

paper:https://arxiv.org/abs/2206.02743

神经语料库索引for文档检索

最近一篇Neural Corpus Indexer基于transformer的文档检索引发了争论。【知乎】所指论文为NeurIPS2022 Outstanding Paper A Neural Corpus Indexer for Document Retrieval。 根据OpenReview上的Revisions记录,Rebuttal阶段的最后修改应该是https://openreview.net/references/pdf?id=y45TgWUfyF,此时Table 1内容为:

但Camera Ready版本是https://openreview.net/references/pdf?id=-bt0HSi9__,此时Table 1的内容为:

特别值得注意的是,在Rebuttal阶段,作者的General Response指出他们的工作即使去掉query generation进行公平比较,也远胜于基线:

但是根据Camera Ready版本的Table 1(见上)和Table 3

NCI(Base) w/ QG是65.86 NCI(Large) w/ QG是66.23 NCI(Base) w/o QG是46.41。如果NCI(Large) w/o QG像w/ QG的设置一样只比Base高0.37,那么它将低于Table 1中的SEAL(Large),而根据General Response,作者认可SEAL是w/o QG的设置。

反思:其实在机器学习里面,如果你的实验有了好的结果,尤其是特别好的结果,那么90%的情况都是有bug造成的。所以在效果比较好的情况时候一定要去仔细检查,看看是否有数据泄漏的情况。这个错误是比较常见的。

文本检索:在一堆的文本里面,将那些跟Query相关的文档找出来。是信息检索里最大的分支。相关信息检索的会议有:SigIR、WSDN、KDD、 NeurIPS (这个 NeurIPS 上文本检索的文章比较少,是一个偏算法的会议)

摘要:

当前最主流的的文档检索解决方案主要是基于索引检索方法,索引就是指对文档做一下哈希值或者embedding,但是索引很难直接针对最终检索目标结果进行优化。 因为哈希是一个固定的算法,或者词嵌入也不一定是根据用户最终的目标来做训练的。在这篇论文中,我们的目标是展示一个端到端的深度神经网络网络统一训练和检索阶段,可以显着提高召回率。在检索方面,召回率相比于准确率更加重要,因为需要把相关的文档全部都找出来,不希望遗漏。在这个文章中,作者提出了一个基于equence-to-sequence network(NCI),针对特定的query来说直接生成相关文档的id。为了提升NCI性能,提出了一个解码器(refix-aware weight-adaptive decoder),还使用了一些其他技术:query的生成、带语义的文档的ID和一致性的正则表达项。

摘要的写法比较常见:该领域之前的方法是怎样的,我们使用一个神经网络做一个端到端的学习,从原始的数据直接生成你要的一个结果。

导言:

文档检索和排序是标准网络搜索引擎的两个关键阶段。 第一,文档检索阶段就是给定一个query,来查询相关的候选文档,然后进行排名阶段为每个文档提供更精确的排名分数。 排名阶段通常由深度神经网络,将每对查询和文档作为输入并预测它们的相关性分数。 然而,一个精确的排名模型是非常昂贵的(对每一个查询对都要去预测分数),所以通常只有一百或一千个检索的候选结果。 因此,召回性能文档检索阶段对网络搜索引擎的有效性至关重要。(检索的这几百个候选结果应该要把所有相关的都包含进来才好)。

其实除了检索的召回率很重要,对于一个检索系统来说,性能是十分重要的,作者在这没有提到,对于一个搜索引擎来说,文档数量在千百亿以上,这个也是这篇文章的一个硬伤,就是太贵了。

现有的文档检索方法可以分为两类,即term-based和基于语义的方法。基于 term 术语的检索方法一般会构建一个倒排索引对整个网络语料库(可以认为就是一个字典,字典里的每个key就是查询,key的值就是对应这个文档id(key出现在该文档中))这个方法非常高效,但它们几乎无法捕获文档语义并且无法检索到类似的不同措辞的文件(比如我输入“文件”,找到的结果只是含有该“文件“的文档,对于文件的相似表达”file“,无法检索到)。 因此,提出了基于语义的方法 来减轻这种差异。基于语义的方法就是把query和文档分别映射成向量(使用twin-tower architecture架构)。然后使用近似K紧邻搜索感兴趣的的K个文档。这种方法的缺点:对于精确匹配exact match,(苹果13和苹果12)表现不好。另外就是ANN近邻算法某些情况(query和文档之间的关系复杂)下也不太好。

端到端的相关工作:一个是DSI,Differentiable Search Index,文本到文本的生成,一个纯transformer,DSI 中的解码器没有充分利用文档标识符的层次结构。第二个SEAL 通过利用段落中的所有 n-gram 作为其标识符id。

twin-tower architecture

Neural Corpus Indexer

神经语料库索引器 (NCI) 是一种序列到序列的神经网络模型。 该模型将查询作为输入并输出最相关的文档标识符 (docid),它可以通过大量<query, docid>对进行训练。

下图就是这个模型的示意图。每次用户输入的是查询query,模型输出的是docID。那文本检索中的文档在哪?文档不可能作为输入送进模型,因为文档数量太大了,开销比较大。这个模型预测的时候不会看到文档的信息,但是做检索肯定需要模型知道各个文档的信息,所以就需要把这些文档全部放入这个模型。所以这部分数据分为两部分,一部分就是<query,docID>查询对。另一部分就是大量的被检索的文档<doc,docID>,因为模型预测的是query到docid的映射,所以需要让模型记住文档和docid的关系,常见做法就是用<doc,docid>无标号的数据去让模型记住全部的文档,当然这里可以把一个<doc,docID>对拆分成多个<query,docid>对,就是把doc里的句子给拆分成query会比较好做一些。模型的设计里有一些比较重要的点:(1)如何设计一个docID,而并非简单的数字,最好docID能够表示doc之间的语义信息。(2)如何将文档分出比较好的query,使得文档自己的语义和它的ID之间做好映射。同时分出的query能够跟预测时候的用户查询query有一定的相似性。(3)模型如何设计?编解码器和loss

NCI示意图

上图就是对应的三个关键点。

  • 如何生成语义的ID:层次Kmeans算法

首先,上图中所有的灰点都代表不同的文档,首先对所有的文档做一个K-means聚类(k=3),不同的类给与不同的id(1,2,3),作为文档id的前缀,如果某个类里面的文档数量多于某个阈值C,他就会对这个类进一步做K-means,继续分出K个子类和对应的id。因此如果两个文档的前缀相近,表示俩个文档的距离比较近。这种层次化标号的好处是如果面对10000中类别标号,直接用一个softmax来对其分类是不好的,有了层次化的标号,就可以分层次预测类别。

  • 从文本生成query

1、DocT5Query:sequence to sequence的模型,将Doc 翻译成 Query的模型。如何使用:将用于检索的文档输入到该模型,来获得多个query的输出(随机采样方法)。

2、Document as Query,像DSI一样,先把每个文档最先的64个term词作为一个query。然后随机在文档的随机位置选择10组,每组64个词作为query。(共11个query)

Prefix-aware weight-adaptive decoder:

r0,r1,r2就是不同层次的类别的id。相比传统的解码器,作者更加考虑到了r0,r1,r2之间的相对位置关系,因此解码器的输入不再是r0,r1,而是包含位置的(1,r0),(2,r1)。实验表明包含位置的解码器输入对于模型提升很大!!!!

另外作者认为在解码器的最后的softmax的全值W对于不同的ri是一样的,这样是不好的,因此希望不同的r对应不同权重。

因此新的Wi如下所示:不仅包含Wi,也包含前面的r0到ri-1的这些信息。

损失函数:

1、增加一个对比学习损失函数,希望同一个query生成的id之间相似度更加接近一些。

2、标准的 cross entropy损失函数

实验

数据集(问答数据集文档来自wiki):

评价指标:

1、Recall@N:表示在获得的N个结果中有没有自己想要的文档

2、MRR: 表示返回结果的排序情况,我们想要的文档在所有结果中的排序情况

结果:

消融实验

性能:在32G的v100上面,时延在100ms还是可以的,但是吞吐量只有50多个query对于搜索引擎来说是不能忍受的。工业部署上还是有一定的距离。

缺点:1、大数据集:目前只是在32万的文档上训练结果,但要是真的用于web搜索,数以亿计的文档需要的模型会很大。2、推理的时延和吞吐量 3、面对新的文档,如何去更新模型?

MINE–利用单张图片做三维重建

端到端类型

用MPI(Multi-Plane Image )代替NeRF的RGBσ作为网络的输出

来自字节跳动视觉技术团队的研究者将 NeRF 和 Multiplane Image(MPI)结合,提出了一种新的三维空间表达方式 MINE。该方法通过对单张图片做三维重建,实现新视角合成和深度估算。

开源了训练代码(基于LLFF数据集的toy example),paper里面数据集的pretrained models,并提供了demo代码:

相关工作

近年来,在新视角合成这个领域里,最火爆的方法无疑是 ECCV 2020 的 NeRF [5]。与传统的一些手工设计的显式三维表达(Light Fields,LDI,MPI 等)不同,NeRF 把整个三维空间的几何信息与 texture 信息全部用一个 MLP 的权重来表达,输入任意一个空间坐标以及观察角度,MLP 会预测一个 RGB 值和 volume density。目标图片的渲染通过 ray tracing 和 volume rendering 的方式来完成。尽管 NeRF 的效果非常惊艳,但它的缺点也非常明显:

  1. 一个模型只能表达一个场景,且优化一个场景耗时久;
  2. per-pixel 渲染较为低效;
  3. 泛化能力较差,一个场景需要较多的照片才能训练好。

另外一个与该研究较相关的是 MPI(Multiplane Image)[1, 2, 3]。MPI 包含了多个平面的 RGB-alpha 图片,其中每个平面表达场景在某个深度中的内容,它的主要缺点在于深度是固定及离散的,这个缺点限制了它对三维空间的表达能力。[1, 2, 3] 都能方便地泛化到不同的场景,然而 MPI 各个平面的深度是固定且离散的,这个缺点严重限制了它的效果。

结合了NeRF和Multiplane Image(MPI),提出了一种新的三维空间表达方式MINE。MINE利用了NeRF的思路,将MPI扩展成了连续深度的形式。输入单张RGB图片,我们的方法会对source相机的视锥(frustum)做稠密的三维重建,同时对被遮挡的部分做inpainting,预测出相机视锥的三维表达。利用这个三维表达,给出target相机相对于source相机的在三维空间中的相对位置和角度变化(rotation and translation),我们可以方便且高效地渲染出在目标相机视图下的RGB图片以及深度图。

MINE在KITTI,RealEstate10K以及Flowers Light Fields数据集上,生成质量大幅超过了当前单视图合成的state-of-the-art。同时,在深度估计benchmark iBims-1和NYU-v2上,虽然我们在训练中只使用了RGB图片和sparse深度监督,MINE在单目深度估计任务上取得了非常接近全监督state-of-the-art的performance,并大幅超越了其他弱监督的方法。

Introduction and Related Works

视图合成(novel view synthesis)需要解决的问题是:在一个场景(scene)下,输入一个或多个图片,它们各自的相机内参和外参(source camera pose),之后对于任意的相机位置和角度(target camera pose),我们想要生成场景在该相机视图下的RGB图片。要解决这个问题,我们的模型需要学会场景的几何结构,同时对被遮挡的部分做inpainting。学术界设计了很多利用learning的方法预测场景的3D/2.5D表达,其中跟我们较相关的是MPI(Multiplane Image)[1, 2, 3]。MPI包含了多个平面的 RGB-α图片,其中每个平面表达场景在某个深度中的内容,它的主要缺点在于深度是固定及离散的,这个缺点限制了它对三维空间的表达能力。

近年来,这个领域的当红炸子鸡无疑是ECCV 2020的NeRF [5]。与传统的一些手工设计的显式三维表达(Light Fields,LDI,MPI等)不同,NeRF把整个三维空间的几何信息与texture信息全部用一个MLP的权重来表达,输入任意一个空间坐标以及观察角度,MLP会预测一个RGB值和volume density。目标图片的渲染通过ray tracing和volume rendering的方式来完成。尽管NeRF的效果非常惊艳,但它的缺点也非常明显:1. 一个模型只能表达一个场景,且优化一个场景耗时久;2. per-pixel渲染较为低效;3. 泛化能力较差,一个场景需要较多的照片才能训练好。

方法综述

该团队采用一个 encoder-decoder 的结构来生成三维表达:

  1. Encoder 是一个全卷积网络,输入为单个 RGB 图片,输出为 feature maps;
  2. Decoder 也是一个全卷积网络,输入为 encoder 输出的 feature map,以及任意深度值(repeat + concat),输出该深度下的 RGB-sigma 图片;
  3. 最终的三维表达由多个平面组成,也就是说在一次完整的 forward 中,encoder 需要 inference 一次,而 decoder 需要 inference N 次获得个 N 平面。

获得三维表达后,不再需要任何的网络 inference,渲染任意 target 相机 pose 下的视角只需要两步:

  1. 利用 homography wrapping 建立像素点间的 correspondence。可以想象,从 target 相机射出一条光线,这条光线与 target 图片的一个像素点相交,然后,研究者延长这条射线,让它与 source 相机视锥的各个平面相交。相交点的 RGB-sigma 值可以通过 bilinear sampling 获得;
  2. 利用 volume rendering 将光线上的点渲染到目标图片像素点上,获得该像素点的 RGB 值与深度。

三维表达与渲染

1. Planar Neural Radiance Field

2. Rendering Process

完成这两步之后,我们就可以通过上面volume rendering的公式渲染任意target camera下的视图了。需要注意的是,在获得3D表达后,渲染任意target camera pose下的视图都只需要这两个步骤,无需再做额外的网络inference

Scale 校正

MINE 可以利用 structure-from-motion 计算的相机参数与点云进行场景的学习,在这种情况下,深度是 ambiguous 的。由于在这个方法中,深度采样的范围是固定的。所以需要计算一个 scale factor,使网络预测的 scale 与 structure-from-motion 的 scale 进行对齐。团队利用通过 Structure from Motion 获得的每个图片的可见 3D 点 P 以及网络预测的深度图 Z 计算 scale factor:

获得 scale factor 后,对相机的位移进行 scale:

需要注意的是,由于需要和 ground truth 比较,所以在训练和测试时需要做 scale calibration。而在部署时不需要做这一步。

端到端的训练

MINE 可以仅通过 RGB 图片学习到场景的三维几何信息,训练 Loss 主要由两部分组成:

1.Reconsturction loss——计算渲染出的 target 图片与 ground truth 的差异:

2.Edge-aware smoothness loss——确保在图片颜色没有突变的地方,深度也不会突变,这里主要参考了 monodepth2 [6] 种的实现:

3.Sparse disparity loss——在训练集各场景的 scale 不一样时,利用 structure-from-motion 获得的稀疏点云辅助场景几何信息的学习:

MINE 与 MPI、NeRF 的比较

MINE 是 MPI 的一种连续深度的扩展,相比于 MPI 和 NeRF,MINE 有几个明显的优势:

  1. 与 NeRF 相比,MINE 能够泛化到训练集没有出现过的场景;
  2. 与 NeRF 的逐点渲染相比,MINE 的渲染非常高效;
  3. 与 MPI 相比,MINE 的深度是连续的,能稠密地表示相机的视锥;
  4. MPI 通过 alpha 合成(alpha compositing)进行渲染,但该方法与射线上点之间的距离无关,而 MINE 利用 volume rendering 解决了这个限制。

然而,MINE 也有一些自身的局限性:

  1. 由于输入是单张图片,MINE 无法表达相机视锥以外的三维空间;
  2. 由于 MINE 的输入里没有观察角度,所以其无法对一些复杂的 view-dependent 效果(如光盘上的彩虹等)进行建模。

[1]. Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely. Stereo Magnification: Learning View Synthesis using Multiplane Images. (SIGGRAPH 2018)

[2]. Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, Abhishek Kar. Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines. (SIGGRAPH 2019)

[3]. Richard Tucker, Noah Snavely. Single-View View Synthesis with Multiplane Images. (CVPR 2020)

InstructGPT /ChatGPT

最近非常火的ChatGPT和今年年初公布的[1]是一对姐妹模型,是在GPT-4之前发布的预热模型,有时候也被叫做GPT3.5。ChatGPT和InstructGPT在模型结构,训练方式上都完全一致,即都使用了指示学习(Instruction Learning)和人工反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF)来指导模型的训练,它们不同的仅仅是采集数据的方式上有所差异。所以要搞懂ChatGPT,我们必须要先读懂InstructGPT

https://arxiv.org/abs/2203.02155

Prompt是激发语言模型的补全能力,例如根据上半句生成下半句,或是完形填空等。Instruct(指令)是激发语言模型的理解能力,它通过给出更明显的指令,让模型去做出正确的行动。

  1. 提示学习:给女朋友买了这个项链,她很喜欢,这个项链太____了。
  2. 指示学习:判断这句话的情感:给女朋友买了这个项链,她很喜欢。选项:A=好;B=一般;C=差。

1. 背景知识

在介绍ChatGPT/InstructGPT之前,我们先介绍它们依赖的基础算法。

1.1 GPT系列

基于文本预训练的GPT-1[2],GPT-2[3],GPT-3[4]三代模型都是采用的以Transformer为核心结构的模型(图1),不同的是模型的层数和词向量长度等超参,它们具体的内容如表1。

图1:GPT系列的模型结构(其中Trm是一个Transformer结构)

表1:历代GPT的发布时间,参数量以及训练量

模型发布时间层数头数词向量长度参数量预训练数据量
GPT-12018 年 6 月12127681.17 亿约 5GB
GPT-22019 年 2 月48160015 亿40GB
GPT-32020 年 5 月9696128881,750 亿45TB

GPT-1比BERT诞生略早几个月。它们都是采用了Transformer为核心结构,不同的是GPT-1通过自左向右生成式的构建预训练任务,然后得到一个通用的预训练模型,这个模型和BERT一样都可用来做下游任务的微调。GPT-1当时在9个NLP任务上取得了SOTA的效果,但GPT-1使用的模型规模和数据量都比较小,这也就促使了GPT-2的诞生。

对比GPT-1,GPT-2并未在模型结构上大作文章,只是使用了更多参数的模型和更多的训练数据(表1)。GPT-2最重要的思想是提出了“所有的有监督学习都是无监督语言模型的一个子集”的思想,这个思想也是提示学习(Prompt Learning)的前身。GPT-2在诞生之初也引发了不少的轰动,它生成的新闻足以欺骗大多数人类,达到以假乱真的效果。甚至当时被称为“AI界最危险的武器”,很多门户网站也命令禁止使用GPT-2生成的新闻。

GPT-3被提出时,除了它远超GPT-2的效果外,引起更多讨论的是它1750亿的参数量。GPT-3除了能完成常见的NLP任务外,研究者意外的发现GPT-3在写SQL,JavaScript等语言的代码,进行简单的数学运算上也有不错的表现效果。GPT-3的训练使用了情境学习(In-context Learning),它是元学习(Meta-learning)的一种,元学习的核心思想在于通过少量的数据寻找一个合适的初始化范围,使得模型能够在有限的数据集上快速拟合,并获得不错的效果。

通过上面的分析我们可以看出从性能角度上讲,GPT有两个目标:

  1. 提升模型在常见NLP任务上的表现效果;
  2. 提升模型在其他非典型NLP任务(例如代码编写,数学运算)上的泛化能力。

另外,预训练模型自诞生之始,一个备受诟病的问题就是预训练模型的偏见性。因为预训练模型都是通过海量数据在超大参数量级的模型上训练出来的,对比完全由人工规则控制的专家系统来说,预训练模型就像一个黑盒子。没有人能够保证预训练模型不会生成一些包含种族歧视,性别歧视等危险内容,因为它的几十GB甚至几十TB的训练数据里几乎肯定包含类似的训练样本。这也就是InstructGPT和ChatGPT的提出动机,论文中用3H概括了它们的优化目标:

  • 有用的(Helpful);
  • 可信的(Honest);
  • 无害的(Harmless)。

OpenAI的GPT系列模型并没有开源,但是它们提供了模型的试用网站,有条件的同学可以自行试用。

1.2 指示学习(Instruct Learning)和提示(Prompt Learning)学习

指示学习是谷歌Deepmind的Quoc V.Le团队在2021年的一篇名为《Finetuned Language Models Are Zero-Shot Learners》[5]文章中提出的思想。指示学习和提示学习的目的都是去挖掘语言模型本身具备的知识。不同的是Prompt是激发语言模型的补全能力,例如根据上半句生成下半句,或是完形填空等。Instruct是激发语言模型的理解能力,它通过给出更明显的指令,让模型去做出正确的行动。我们可以通过下面的例子来理解这两个不同的学习方式:

  1. 提示学习:给女朋友买了这个项链,她很喜欢,这个项链太____了。
  2. 指示学习:判断这句话的情感:给女朋友买了这个项链,她很喜欢。选项:A=好;B=一般;C=差。

指示学习的优点是它经过多任务的微调后,也能够在其他任务上做zero-shot,而提示学习都是针对一个任务的。泛化能力不如指示学习。我们可以通过图2来理解微调,提示学习和指示学习。

图2:模型微调,提示学习,指示学习三者的异同

1.3 人工反馈的强化学习

因为训练得到的模型并不是非常可控的,模型可以看做对训练集分布的一个拟合。那么反馈到生成模型中,训练数据的分布便是影响生成内容的质量最重要的一个因素。有时候我们希望模型并不仅仅只受训练数据的影响,而是人为可控的,从而保证生成数据的有用性,真实性和无害性。论文中多次提到了对齐(Alignment)问题,我们可以理解为模型的输出内容和人类喜欢的输出内容的对齐,人类喜欢的不止包括生成内容的流畅性和语法的正确性,还包括生成内容的有用性、真实性和无害性。

我们知道强化学习通过奖励(Reward)机制来指导模型训练,奖励机制可以看做传统模训练机制的损失函数。奖励的计算要比损失函数更灵活和多样(AlphaGO的奖励是对局的胜负),这带来的代价是奖励的计算是不可导的,因此不能直接拿来做反向传播。强化学习的思路是通过对奖励的大量采样来拟合损失函数,从而实现模型的训练。同样人类反馈也是不可导的,那么我们也可以将人工反馈作为强化学习的奖励,基于人工反馈的强化学习便应运而生。

RLHF最早可以追溯到Google在2017年发表的《Deep Reinforcement Learning from Human Preferences》[6],它通过人工标注作为反馈,提升了强化学习在模拟机器人以及雅达利游戏上的表现效果。

图3:人工反馈的强化学习的基本原理

InstructGPT/ChatGPT中还用到了强化学习中一个经典的算法:OpenAI提出的最近策略优化(Proximal Policy Optimization,PPO)[7]。PPO算法是一种新型的Policy Gradient算法,Policy Gradient算法对步长十分敏感,但是又难以选择合适的步长,在训练过程中新旧策略的的变化差异如果过大则不利于学习。PPO提出了新的目标函数可以在多个训练步骤实现小批量的更新,解决了Policy Gradient算法中步长难以确定的问题。其实TRPO也是为了解决这个思想但是相比于TRPO算法PPO算法更容易求解。

2. InstructGPT/ChatGPT原理解读

有了上面这些基础知识,我们再去了解InstructGPT和ChatGPT就会简单很多。简单来说,InstructGPT/ChatGPT都是采用了GPT-3的网络结构,通过指示学习构建训练样本来训练一个反应预测内容效果的奖励模型(RM),最后通过这个奖励模型的打分来指导强化学习模型的训练。InstructGPT/ChatGPT的训练流程如图4所示。

图4:InstructGPT的计算流程:(1)有监督微调(SFT);(2)奖励模型(RM)训练;(3)通过PPO根据奖励模型进行强化学习。

从图4中我们可以看出,InstructGPT/ChatGPT的训练可以分成3步,其中第2步和第3步是的奖励模型和强化学习的SFT模型可以反复迭代优化。

  1. 根据采集的SFT数据集对GPT-3进行有监督的微调(Supervised FineTune,SFT);
  2. 收集人工标注的对比数据,训练奖励模型(Reword Model,RM);
  3. 使用RM作为强化学习的优化目标,利用PPO算法微调SFT模型。

根据图4,我们将分别介绍InstructGPT/ChatGPT的数据集采集和模型训练两个方面的内容。

2.1 数据集采集

如图4所示,InstructGPT/ChatGPT的训练分成3步,每一步需要的数据也有些许差异,下面我们分别介绍它们。

2.1.1 SFT数据集

SFT数据集是用来训练第1步有监督的模型,即使用采集的新数据,按照GPT-3的训练方式对GPT-3进行微调。因为GPT-3是一个基于提示学习的生成模型,因此SFT数据集也是由提示-答复对组成的样本。SFT数据一部分来自使用OpenAI的PlayGround的用户,另一部分来自OpenAI雇佣的40名标注工(labeler)。并且他们对labeler进行了培训。在这个数据集中,标注工的工作是根据内容自己编写指示,并且要求编写的指示满足下面三点:

  • 简单任务:labeler给出任意一个简单的任务,同时要确保任务的多样性;
  • Few-shot任务:labeler给出一个指示,以及该指示的多个查询-相应对;
  • 用户相关的:从接口中获取用例,然后让labeler根据这些用例编写指示。

2.1.2 RM数据集

RM数据集用来训练第2步的奖励模型,我们也需要为InstructGPT/ChatGPT的训练设置一个奖励目标。这个奖励目标不必可导,但是一定要尽可能全面且真实的对齐我们需要模型生成的内容。很自然的,我们可以通过人工标注的方式来提供这个奖励,通过人工对可以给那些涉及偏见的生成内容更低的分从而鼓励模型不去生成这些人类不喜欢的内容。InstructGPT/ChatGPT的做法是先让模型生成一批候选文本,让后通过labeler根据生成数据的质量对这些生成内容进行排序。

2.1.3 PPO数据集

InstructGPT的PPO数据没有进行标注,它均来自GPT-3的API的用户。既又不同用户提供的不同种类的生成任务,其中占比最高的包括生成任务(45.6%),QA(12.4%),头脑风暴(11.2%),对话(8.4%)等。

2.1.4 数据分析

因为InstructGPT/ChatGPT是在GPT-3基础上做的微调,而且因为涉及了人工标注,它们数据总量并不大,表2展示了三份数据的来源及其数据量。

表2:InstructGPT的数据分布

论文的附录A对数据的分布进行了更详细的讨论,这里我列出几个可能影响模型效果的几项:

  • 数据中96%以上是英文,其它20个语种例如中文,法语,西班牙语等加起来不到4%,这可能导致InstructGPT/ChatGPT能进行其它语种的生成,但效果应该远不如英文;
  • 提示种类共有9种,而且绝大多数是生成类任务,可能会导致模型有覆盖不到的任务类型;
  • 40名外包员工来自美国和东南亚,分布比较集中且人数较少, InstructGPT/ChatGPT的目标是训练一个价值观正确的预训练模型,它的价值观是由这40个外包员工的价值观组合而成。而这个比较窄的分布可能会生成一些其他地区比较在意的歧视,偏见问题。

此外,ChatGPT的博客中讲到ChatGPT和InstructGPT的训练方式相同,不同点仅仅是它们采集数据上有所不同,但是并没有更多的资料来讲数据采集上有哪些细节上的不同。考虑到ChatGPT仅仅被用在对话领域,这里我猜测ChatGPT在数据采集上有两个不同:1. 提高了对话类任务的占比;2. 将提示的方式转换Q&A的方式。当然这里也仅仅是猜测,更准确的描述要等到ChatGPT的论文、源码等更详细的资料公布我们才能知道。

2.2 训练任务

我们刚介绍到InstructGPT/ChatGPT有三步训练方式。这三步训练会涉及三个模型:SFT,RM以及PPO,下面我们详细介绍它们。

2.2.1 有监督微调(SFT)

这一步的训练和GPT-3一致,而且作者发现让模型适当过拟合有助于后面两步的训练。

2.2.2 奖励模型(RM)

因为训练RM的数据是一个labeler根据生成结果排序的形式,所以它可以看做一个回归模型。RM结构是将SFT训练后的模型的最后的嵌入层去掉后的模型。它的输入是prompt和Reponse,输出是奖励值。具体的讲,对弈每个prompt,InstructGPT/ChatGPT会随机生成 K 个输出( 4≤K≤9 ),然后它们向每个labeler成对的展示输出结果,也就是每个prompt共展示 CK2 个结果,然后用户从中选择效果更好的输出。在训练时,InstructGPT/ChatGPT将每个prompt的 CK2 个响应对作为一个batch,这种按prompt为batch的训练方式要比传统的按样本为batch的方式更不容易过拟合,因为这种方式每个prompt会且仅会输入到模型中一次。

奖励模型的损失函数表示为式(1)。这个损失函数的目标是最大化labeler更喜欢的响应和不喜欢的响应之间的差值。

2.2.3 强化学习模型(PPO)

强化学习和预训练模型是最近两年最为火热的AI方向之二,之前不少科研工作者说强化学习并不是一个非常适合应用到预训练模型中,因为很难通过模型的输出内容建立奖励机制。而InstructGPT/ChatGPT反直觉的做到了这点,它通过结合人工标注,将强化学习引入到预训练语言模型是这个算法最大的创新点。

如表2所示,PPO的训练集完全来自API。它通过第2步得到的奖励模型来指导SFT模型的继续训练。很多时候强化学习是非常难训练的,InstructGPT/ChatGPT在训练过程中就遇到了两个问题:

  1. 问题1:随着模型的更新,强化学习模型产生的数据和训练奖励模型的数据的差异会越来越大。作者的解决方案是在损失函数中加入KL惩罚项 βlog⁡(πϕRL(y∣x)/πSFT(y∣x)) 来确保PPO模型的输出和SFT的输出差距不会很大。
  2. 问题2:只用PPO模型进行训练的话,会导致模型在通用NLP任务上性能的大幅下降,作者的解决方案是在训练目标中加入了通用的语言模型目标 γEx∼Dpretrain [log⁡(πϕRL(x))] ,这个变量在论文中被叫做PPO-ptx。

综上,PPO的训练目标为式(2)。

3. InstructGPT/ChatGPT的性能分析

不可否认的是,InstructGPT/ChatGPT的效果是非常棒的,尤其是引入了人工标注之后,让模型的“价值观”和的正确程度和人类行为模式的“真实性”上都大幅的提升。那么,仅仅根据InstructGPT/ChatGPT的技术方案和训练方式,我们就可以分析出它可以带来哪些效果提升呢?

3.1 优点

  • InstructGPT/ChatGPT的效果比GPT-3更加真实:这个很好理解,因为GPT-3本身就具有非常强的泛化能力和生成能力,再加上InstructGPT/ChatGPT引入了不同的labeler进行提示编写和生成结果排序,而且还是在GPT-3之上进行的微调,这使得我们在训练奖励模型时对更加真实的数据会有更高的奖励。作者也在TruthfulQA数据集上对比了它们和GPT-3的效果,实验结果表明甚至13亿小尺寸的PPO-ptx的效果也要比GPT-3要好。
  • InstructGPT/ChatGPT在模型的无害性上比GPT-3效果要有些许提升:原理同上。但是作者发现InstructGPT在歧视、偏见等数据集上并没有明显的提升。这是因为GPT-3本身就是一个效果非常好的模型,它生成带有有害、歧视、偏见等情况的有问题样本的概率本身就会很低。仅仅通过40个labeler采集和标注的数据很可能无法对模型在这些方面进行充分的优化,所以会带来模型效果的提升很少或者无法察觉。
  • InstructGPT/ChatGPT具有很强的Coding能力:首先GPT-3就具有很强的Coding能力,基于GPT-3制作的API也积累了大量的Coding代码。而且也有部分OpenAI的内部员工参与了数据采集工作。通过Coding相关的大量数据以及人工标注,训练出来的InstructGPT/ChatGPT具有非常强的Coding能力也就不意外了。

3.2 缺点

  • InstructGPT/ChatGPT会降低模型在通用NLP任务上的效果:我们在PPO的训练的时候讨论了这点,虽然修改损失函数可以缓和,但这个问题并没有得到彻底解决。
  • 有时候InstructGPT/ChatGPT会给出一些荒谬的输出:虽然InstructGPT/ChatGPT使用了人类反馈,但限于人力资源有限。影响模型效果最大的还是有监督的语言模型任务,人类只是起到了纠正作用。所以很有可能受限于纠正数据的有限,或是有监督任务的误导(只考虑模型的输出,没考虑人类想要什么),导致它生成内容的不真实。就像一个学生,虽然有老师对他指导,但也不能确定学生可以学会所有知识点。
  • 模型对指示非常敏感:这个也可以归结为labeler标注的数据量不够,因为指示是模型产生输出的唯一线索,如果指示的数量和种类训练的不充分的话,就可能会让模型存在这个问题。
  • 模型对简单概念的过分解读:这可能是因为labeler在进行生成内容的比较时,倾向于给给长的输出内容更高的奖励。
  • 对有害的指示可能会输出有害的答复:例如InstructGPT/ChatGPT也会对用户提出的“AI毁灭人类计划书”给出行动方案(图5)。这个是因为InstructGPT/ChatGPT假设labeler编写的指示是合理且价值观正确的,并没有对用户给出的指示做更详细的判断,从而会导致模型会对任意输入都给出答复。虽然后面的奖励模型可能会给这类输出较低的奖励值,但模型在生成文本时,不仅要考虑模型的价值观,也要考虑生成内容和指示的匹配度,有时候生成一些价值观有问题的输出也是可能的。
图5:ChatGPT编写的毁灭人类计划书。

3.3 未来工作

我们已经分析了InstrcutGPT/ChatGPT的技术方案和它的问题,那么我们也可以看出InstrcutGPT/ChatGPT的优化角度有哪些了。

  • 人工标注的降本增效:InstrcutGPT/ChatGPT雇佣了40人的标注团队,但从模型的表现效果来看,这40人的团队是不够的。如何让人类能够提供更有效的反馈方式,将人类表现和模型表现有机和巧妙的结合起来是非常重要的。
  • 模型对指示的泛化/纠错等能力:指示作为模型产生输出的唯一线索,模型对他的依赖是非常严重的,如何提升模型对指示的泛化能力以及对错误指示示的纠错能力是提升模型体验的一个非常重要的工作。这不仅可以让模型能够拥有更广泛的应用场景,还可以让模型变得更“智能”。
  • 避免通用任务性能下降:这里可能需要设计一个更合理的人类反馈的使用方式,或是更前沿的模型结构。因为我们讨论了InstrcutGPT/ChatGPT的很多问题可以通过提供更多labeler标注的数据来解决,但这会导致通用NLP任务更严重的性能下降,所以需要方案来让生成结果的3H和通用NLP任务的性能达到平衡。

3.4 InstrcutGPT/ChatGPT的热点话题解答

  • ChatGPT的出现会不会导致底层程序员失业?从ChatGPT的原理和网上漏出的生成内容来看,ChatGPT生成的代码很多可以正确运行。但程序员的工作不止是写代码,更重要的是找到问题的解决方案。所以ChatGPT并不会取代程序员,尤其是高阶程序员。相反它会向现在很多的代码生成工具一样,成为程序员写代码非常有用的工具。
  • Stack Overflow 宣布临时规则:禁止 ChatGPT。ChatGPT本质上还是一个文本生成模型,对比生成代码,它更擅长生成以假乱真的文本。而且文本生成模型生成的代码或者解决方案并不能保证是可运行而且是可以解决问题的,但它以假乱真的文本又会迷惑很多查询这个问题的人。Stack Overflow为了维持论坛的质量,封禁ChatGPT也是清理之中。
  • 聊天机器人 ChatGPT 在诱导下写出「毁灭人类计划书」,并给出代码,AI 发展有哪些问题需关注?ChatGPT的「毁灭人类计划书」是它在不可遇见的指示下根据海量数据强行拟合出来的生成内容。虽然这些内容看起来很真实,表达也很流畅,这说明的只是ChatGPT具有非常强的生成效果,并不表示ChatGPT具备毁灭人类的思想。因为他仅仅是一个文本生成模型,并不是一个决策模型。

4. 总结

就像很多人们算法刚诞生时一样,ChatGPT凭借有用性,真实性,无害性的效果,引起了业内广泛的关注和人类对AI的思考。但是当我们看完它的算法原理之后,发现它并没有业内宣传的那么恐怖。反而我们可以从它的技术方案中学到很多有价值的东西。InstrcutGPT/ChatGPT在AI界最重要的贡献是将强化学习和预训练模型巧妙的结合起来。而且通过人工反馈提升了模型的有用性,真实性和无害性。ChatGPT也进一步提升大模型的成本,之前还只是比拼数据量和模型规模,现在甚至也引入了雇佣的外包这一支出,让个体工作者更加望而却步。

参考

  1. ^Ouyang, Long, et al. “Training language models to follow instructions with human feedback.” *arXiv preprint arXiv:2203.02155* (2022). https://arxiv.org/pdf/2203.02155.pdf
  2. ^Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language understanding by generative pre-training. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
  3. ^Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I., 2019. Language models are unsupervised multitask learners. *OpenAI blog*, *1*(8), p.9. https://life-extension.github.io/2020/05/27/GPT%E6%8A%80%E6%9C%AF%E5%88%9D%E6%8E%A2/language-models.pdf
  4. ^Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. “Language models are few-shot learners.” *arXiv preprint arXiv:2005.14165* (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
  5. ^Wei, Jason, et al. “Finetuned language models are zero-shot learners.” *arXiv preprint arXiv:2109.01652* (2021). https://arxiv.org/pdf/2109.01652.pdf
  6. ^Christiano, Paul F., et al. “Deep reinforcement learning from human preferences.” *Advances in neural information processing systems* 30 (2017). https://arxiv.org/pdf/1706.03741.pdf
  7. ^Schulman, John, et al. “Proximal policy optimization algorithms.” *arXiv preprint arXiv:1707.06347* (2017). https://arxiv.org/pdf/1707.06347.pdf

神经辐射场(NeRF)-代码解析

参考:Dasuda​ and Liwen.site

参考代码:Nerf-pl: https://github.com/kwea123/nerf_pl

位置编码

NeRF 的输入是一个五维向量: (物体)空间点的位置x=(x,y,z) 和 (相机)观测方向d=(θ,ϕ)。NeRF 使用了位置编码(positional encoding)把一维的位置坐标,转换为高维的表征。例如 p∈RL, 通过函数γ(⋅) 映射到R2L 空间中,这里L 指的是编码的数量,对于位置坐标,L=10;对于观测角度,L=4。

代码实现

 # 类的定义
class Embedding(nn.Module):
    def __init__(self, in_channels, N_freqs, logscale=True):
        """
        Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
        in_channels: number of input channels (3 for both xyz and direction)
        """
        super(Embedding, self).__init__()
        self.N_freqs = N_freqs
        self.in_channels = in_channels
        self.funcs = [torch.sin, torch.cos]
        self.out_channels = in_channels*(len(self.funcs)*N_freqs+1)
 
        if logscale:
            self.freq_bands = 2**torch.linspace(0, N_freqs-1, N_freqs)
        else:
            self.freq_bands = torch.linspace(1, 2**(N_freqs-1), N_freqs)
 
    def forward(self, x):
        """
        Embeds x to (x, sin(2^k x), cos(2^k x), ...) 
        Different from the paper, "x" is also in the output
        See https://github.com/bmild/nerf/issues/12
 
        Inputs:
            x: (B, self.in_channels)
 
        Outputs:
            out: (B, self.out_channels)
        """
        out = [x]
        for freq in self.freq_bands:
            for func in self.funcs:
                out += [func(freq*x)]
 
        return torch.cat(out, -1)
 
# 使用
 
class NeRFSystem(LightningModule):
    def __init__(self, hparams):
        ...
        self.embedding_xyz = Embedding(3, 10) # 10 is the default number
        self.embedding_dir = Embedding(3, 4) # 4 is the default number
        self.embeddings = [self.embedding_xyz, self.embedding_dir]
        ...   

解释

  • 对于位置坐标 (x,y,z), 每一个值都使用 10 个 sin 和 10 个cos 频率进行拓展。例如 Embeds x to (x, sin (2^k x), cos (2^k x), …) 。再连接一个本身。因此每一个值都拓展为 10+10+1=21维。对于位置坐标的三个值,总共有 3×21=63 维。
  • 对于相机角度 (θ,ϕ),也是类似,使用 4 个sin 和 4 个 cos 频率进行拓展。这里输入保留了一位,实际输入是(θ,ϕ,1)。再连接一个本身。因此每一个值都拓展为4+4+1=9 维。对于相机角度的三个值,总共有 3×9=27 维。

NeRF 网络

NeRF 网络默认是一个多层的 MLP。中间第四层有 skip connection,构成了一个 ResNet 的结构。网络的宽度默认为 256。

输入

  1. 位置坐标的表征(in_channels_xyz):63d

输出

  1. 体密度σ:1d
  2. RGB 色彩值C: 3d

网络结构
FC 指的是带 ReLU 的全连接层。Linear 层指的是单纯的线性方程。

quicker_40ae8453-64cb-4645-8a27-e62001a85aa2.png

代码实现

class NeRF(nn.Module):
    def __init__(self,
                 D=8, W=256,
                 in_channels_xyz=63, in_channels_dir=27, 
                 skips=[4]):
        """
        D: number of layers for density (sigma) encoder
        W: number of hidden units in each layer
        in_channels_xyz: number of input channels for xyz (3+3*10*2=63 by default)
        in_channels_dir: number of input channels for direction (3+3*4*2=27 by default)
        skips: add skip connection in the Dth layer
        """
        super(NeRF, self).__init__()
        self.D = D
        self.W = W
        self.in_channels_xyz = in_channels_xyz
        self.in_channels_dir = in_channels_dir
        self.skips = skips
 
        # xyz encoding layers
        for i in range(D):
            if i == 0:
                layer = nn.Linear(in_channels_xyz, W)
            elif i in skips:
                layer = nn.Linear(W+in_channels_xyz, W)
            else:
                layer = nn.Linear(W, W)
            layer = nn.Sequential(layer, nn.ReLU(True))
            setattr(self, f"xyz_encoding_{i+1}", layer)
        self.xyz_encoding_final = nn.Linear(W, W)
 
        # direction encoding layers
        self.dir_encoding = nn.Sequential(
                                nn.Linear(W+in_channels_dir, W//2),
                                nn.ReLU(True))
 
        # output layers
        self.sigma = nn.Linear(W, 1)
        self.rgb = nn.Sequential(
                        nn.Linear(W//2, 3),
                        nn.Sigmoid())
 
    def forward(self, x, sigma_only=False):
        """
        Encodes input (xyz+dir) to rgb+sigma (not ready to render yet).
        For rendering this ray, please see rendering.py
 
        Inputs:
            x: (B, self.in_channels_xyz(+self.in_channels_dir))
               the embedded vector of position and direction
            sigma_only: whether to infer sigma only. If True,
                        x is of shape (B, self.in_channels_xyz)
 
        Outputs:
            if sigma_ony:
                sigma: (B, 1) sigma
            else:
                out: (B, 4), rgb and sigma
        """
        if not sigma_only:
            input_xyz, input_dir = \
                torch.split(x, [self.in_channels_xyz, self.in_channels_dir], dim=-1)
        else:
            input_xyz = x
 
        xyz_ = input_xyz
        for i in range(self.D):
            if i in self.skips:
                xyz_ = torch.cat([input_xyz, xyz_], -1)
            xyz_ = getattr(self, f"xyz_encoding_{i+1}")(xyz_)
 
        sigma = self.sigma(xyz_)
        if sigma_only:
            return sigma
 
        xyz_encoding_final = self.xyz_encoding_final(xyz_)
 
        dir_encoding_input = torch.cat([xyz_encoding_final, input_dir], -1)
        dir_encoding = self.dir_encoding(dir_encoding_input)
        rgb = self.rgb(dir_encoding)
 
        out = torch.cat([rgb, sigma], -1)
 
        return out

体素渲染

假设我们已经得到了一束光线上所有的位置对应的色彩和体密度。我们需要对这束光线进行后处理(体素渲染),得到最终在图片上的像素值。

# z_vals: (N_rays, N_samples_) depths of the sampled positions
# noise_std: factor to perturb the model's prediction of sigma(提升模型鲁棒性??)
 
# Convert these values using volume rendering (Section 4)
deltas = z_vals[:, 1:] - z_vals[:, :-1] # (N_rays, N_samples_-1)
delta_inf = 1e10 * torch.ones_like(deltas[:, :1]) # (N_rays, 1) the last delta is infinity
deltas = torch.cat([deltas, delta_inf], -1)  # (N_rays, N_samples_)
 
# Multiply each distance by the norm of its corresponding direction ray
# to convert to real world distance (accounts for non-unit directions).
deltas = deltas * torch.norm(dir_.unsqueeze(1), dim=-1)
 
noise = torch.randn(sigmas.shape, device=sigmas.device) * noise_std
 
# compute alpha by the formula (3)
alphas = 1-torch.exp(-deltas*torch.relu(sigmas+noise)) # (N_rays, N_samples_)
alphas_shifted = \
    torch.cat([torch.ones_like(alphas[:, :1]), 1-alphas+1e-10], -1) # [1, a1, a2, ...]
weights = \
    alphas * torch.cumprod(alphas_shifted, -1)[:, :-1] # (N_rays, N_samples_)
weights_sum = weights.sum(1) # (N_rays), the accumulated opacity along the rays
                                # equals "1 - (1-a1)(1-a2)...(1-an)" mathematically
if weights_only:
    return weights
 
# compute final weighted outputs
rgb_final = torch.sum(weights.unsqueeze(-1)*rgbs, -2) # (N_rays, 3)
depth_final = torch.sum(weights*z_vals, -1) # (N_rays)

第二轮渲染

对于渲染的结果,会根据 对应的权重,使用 pdf 抽样,得到新的渲染点。例如默认第一轮粗渲染每束光线是 64 个样本点,第二轮再增加 128 个抽样点。

然后使用 finemodel 进行预测,后对所有的样本点(64+128)进行体素渲染。

def sample_pdf(bins, weights, N_importance, det=False, eps=1e-5):
    """
    Sample @N_importance samples from @bins with distribution defined by @weights.
 
    Inputs:
        bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
        weights: (N_rays, N_samples_)
        N_importance: the number of samples to draw from the distribution
        det: deterministic or not
        eps: a small number to prevent division by zero
 
    Outputs:
        samples: the sampled samples
    """
    N_rays, N_samples_ = weights.shape
    weights = weights + eps # prevent division by zero (don't do inplace op!)
    pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
    cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
    cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1)  # (N_rays, N_samples_+1) 
                                                               # padded to 0~1 inclusive
 
    if det:
        u = torch.linspace(0, 1, N_importance, device=bins.device)
        u = u.expand(N_rays, N_importance)
    else:
        u = torch.rand(N_rays, N_importance, device=bins.device)
    u = u.contiguous()
 
    inds = searchsorted(cdf, u, side='right')
    below = torch.clamp_min(inds-1, 0)
    above = torch.clamp_max(inds, N_samples_)
 
    inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
    cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
    bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
 
    denom = cdf_g[...,1]-cdf_g[...,0]
    denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
                         # anyway, therefore any value for it is fine (set to 1 here)
 
    samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
    return samples

Loss

这里直接使用的 MSE loss,对输出的像素值和 ground truth 计算 L2-norm loss.

训练数据

训练数据

quicker_a23cfc59-ae27-4cb6-83fa-5149a4b91f19.png

根据前面的介绍,NeRF 实现的,是从 【位置坐标 katex 和 拍摄角度(θ,ϕ)】 到 【体密度 (σ) 和 RGB 色彩值 (C)】的映射。根据体素渲染理论,图片中的每一个像素,实质上都是从相机发射出的一条光线渲染得到的。 因此,我们首先,需要得到每一个像素对应的光线(ray), 然后,计算光线上每一个点的【体密度σ) 和 RGB 色彩值 (C)】,最后再渲染得到对应的像素值。

对于训练数据,我们需要拍摄一系列的图片(如 100 张)图片和他们的拍摄相机角度、内参、场景边界(可以使用 COLMAP 获得)。我们需要准备每一个像素对应的光线(ray)信息,这样可以组成成对的训练数据【光线信息 <==> 像素值】。

下面以 LLFFDataset (”datasets/llff.py”) 为例,进行分析:

读取的数据(以一张图片为例)

  • 图片:尺寸是 N_img​×C×H×W。 其中 C=3 代表了这是 RGB 三通道图片
  • 拍摄角度信息(从 COLMAP 生成):Nimg​×17。前 15 维可以变形为 3×5,代表了相机的 pose,后 2 维是最近和最远的深度。解释: 3×5 pose matrices and 2 depth bounds for each image. Each pose has [R T] as the left 3×4 matrix and [H W F] as the right 3×1 matrix. R matrix is in the form [down right back] instead of [right up back] . (https://github.com/bmild/nerf/issues/34

拍摄角度预处理

第一步:根据拍摄的尺寸和处理尺寸的关系,缩放相机的焦距。例如:Himg​=3024,Wimg​=4032,Fimg​=3260, 如果我们想处理的尺寸是H=378,W=504 (为了提升训练的速度),我们需要缩放焦距 F:

# "datasets/llff.py", line:188
    # Step 1: rescale focal length according to training resolution
    H, W, self.focal = poses[0, :, -1] # original intrinsics, same for all images
    assert H*self.img_wh[0] == W*self.img_wh[1], \
        f'You must set @img_wh to have the same aspect ratio as ({W}, {H}) !'
 
    self.focal *= self.img_wh[0]/W

第二步:调整 pose 的方向。在 “poses_bounds.npy” 中,pose 的方向是 “下右后”,我们调整到 “右上后”。同时使用 “center_poses(poses)” 函数,对整个 dataset 的坐标轴进行标准化(??)。
解释:“poses_avg computes a “central” pose for the dataset, based on using the mean translation, the mean z axis, and adopting the mean y axis as an “up” direction (so that Up x Z = X and then Z x X = Y). recenter_poses very simply applies the inverse of this average pose to the dataset (a rigid rotation/translation) so that the identity extrinsic matrix is looking at the scene, which is nice because normalizes the orientation of the scene for later rendering from the learned NeRF. This is also important for using NDC (Normalized device coordinates) coordinates, since we assume the scene is centered there too.”(https://github.com/bmild/nerf/issues/34

# "datasets/llff.py", line:195
    # Step 2: correct poses
    # Original poses has rotation in form "down right back", change to "right up back"
    # See https://github.com/bmild/nerf/issues/34
    poses = np.concatenate([poses[..., 1:2], -poses[..., :1], poses[..., 2:4]], -1)
            # (N_images, 3, 4) exclude H, W, focal
    self.poses, self.pose_avg = center_poses(poses)

第三步:令最近的距离约为 1。 解释:“The NDC code takes in a “near” bound and assumes the far bound is infinity (this doesn’t matter too much since NDC space samples in 1/depth so moving from “far” to infinity is only slightly less sample-efficient). You can see here that the “near” bound is hardcoded to 1”。For more details on how to use NDC space see https://github.com/bmild/nerf/files/4451808/ndc_derivation.pdf

# "datasets/llff.py", line:205    # Step 3: correct scale so that the nearest depth is at a little more than 1.0    # See https://github.com/bmild/nerf/issues/34    near_original = self.bounds.min()    scale_factor = near_original*0.75 # 0.75 is the default parameter                                        # the nearest depth is at 1/0.75=1.33    self.bounds /= scale_factor    self.poses[..., 3] /= scale_factor

计算光线角度


接下来就是对每一个像素,使用 “get_ray_directions()” 函数计算所对应的光线。这里只需要使用图像的长宽和焦距即可计算

self.directions = get_ray_directions(self.img_wh[1], self.img_wh[0], self.focal) # (H, W, 3)

调用函数:

def get_ray_directions(H, W, focal):
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems
 
    Inputs:
        H, W, focal: image height, width and focal length
 
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    grid = create_meshgrid(H, W, normalized_coordinates=False)[0]
    i, j = grid.unbind(-1)
    # the direction here is without +0.5 pixel centering as calibration is not so accurate
    # see https://github.com/bmild/nerf/issues/24
    directions = \
        torch.stack([(i-W/2)/focal, -(j-H/2)/focal, -torch.ones_like(i)], -1) # (H, W, 3)
 
    return directions

世界坐标系下的光线
在拿到每一个像素对应的光线角度后,我们需要得到具体的光线信息。首先,先计算在世界坐标系下的光线信息。主要是一个归一化的操作。

Get ray origin and normalized directions in world coordinate for all pixels in one image. Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/standard-coordinate-systems

输入:

图像上每一点所对应的光线角度:(H, W, 3) precomputed ray directions in camera coordinate。
相机映射矩阵 c2w:(3, 4) transformation matrix from camera coordinate to world coordinate
输出:

光线原点在世界坐标系中的坐标:(HW, 3), the origin of the rays in world coordinate 在世界坐标系中,归一化的光线角度:(HW, 3), the normalized direction of the rays in world


def get_rays(directions, c2w):
    """
    Get ray origin and normalized directions in world coordinate for all pixels in one image.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems
 
    Inputs:
        directions: (H, W, 3) precomputed ray directions in camera coordinate
        c2w: (3, 4) transformation matrix from camera coordinate to world coordinate
 
    Outputs:
        rays_o: (H*W, 3), the origin of the rays in world coordinate
        rays_d: (H*W, 3), the normalized direction of the rays in world coordinate
    """
    # Rotate ray directions from camera coordinate to the world coordinate
    rays_d = directions @ c2w[:, :3].T # (H, W, 3)
    rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
    # The origin of all rays is the camera origin in world coordinate
    rays_o = c2w[:, 3].expand(rays_d.shape) # (H, W, 3)
 
    rays_d = rays_d.view(-1, 3)
    rays_o = rays_o.view(-1, 3)
 
    return rays_o, rays_d

NDC 下的光线

NDC (Normalized device coordinates) 归一化的设备坐标系。

首先对光线的边界进行限定:

near, far = 0, 1

然后对坐标进行平移和映射。

def get_ndc_rays(H, W, focal, near, rays_o, rays_d):
    """
    Transform rays from world coordinate to NDC.
    NDC: Space such that the canvas is a cube with sides [-1, 1] in each axis.
    For detailed derivation, please see:
    http://www.songho.ca/opengl/gl_projectionmatrix.html
    https://github.com/bmild/nerf/files/4451808/ndc_derivation.pdf
 
    In practice, use NDC "if and only if" the scene is unbounded (has a large depth).
    See https://github.com/bmild/nerf/issues/18
 
    Inputs:
        H, W, focal: image height, width and focal length
        near: (N_rays) or float, the depths of the near plane
        rays_o: (N_rays, 3), the origin of the rays in world coordinate
        rays_d: (N_rays, 3), the direction of the rays in world coordinate
 
    Outputs:
        rays_o: (N_rays, 3), the origin of the rays in NDC
        rays_d: (N_rays, 3), the direction of the rays in NDC
    """
    # Shift ray origins to near plane
    t = -(near + rays_o[...,2]) / rays_d[...,2]
    rays_o = rays_o + t[...,None] * rays_d
 
    # Store some intermediate homogeneous results
    ox_oz = rays_o[...,0] / rays_o[...,2]
    oy_oz = rays_o[...,1] / rays_o[...,2]
 
    # Projection
    o0 = -1./(W/(2.*focal)) * ox_oz
    o1 = -1./(H/(2.*focal)) * oy_oz
    o2 = 1. + 2. * near / rays_o[...,2]
 
    d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - ox_oz)
    d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - oy_oz)
    d2 = 1 - o2
 
    rays_o = torch.stack([o0, o1, o2], -1) # (B, 3)
    rays_d = torch.stack([d0, d1, d2], -1) # (B, 3)
 
    return rays_o, rays_d

训练数据的生成

输出分为两部分:光线的信息,和对应的图片像素值

  • 对于每一束光线,按照 【光线原点 (3d), 光线角度 (3d), 最近的边界 (1d), 最远的边界 (1d)】= 8d 的格式存储。
  • 光线对应的像素,RGB=3d 的格式存储。
self.all_rays += [torch.cat([rays_o, rays_d,                                              near*torch.ones_like(rays_o[:, :1]),                                             far*torch.ones_like(rays_o[:, :1])],                                             1)] # (h*w, 8)

NeRF:用深度学习完成3D渲染任务的蹿红

转自:Leviosa

1 引言

NeRF是2020年ECCV论文。仅仅过去不到2年,关于NeRF的论文数量已经十分可观。相比于计算机视觉,尤其是相比于基于深度学习的计算机视觉,计算机图形学是比较困难、比较晦涩的。被深度学习席卷的计算机视觉任务数不胜数,但被深度学习席卷的计算机图形学任务仍然尚少。

由于NeRF及其众多follow-up工作在图形学中非常重要的渲染任务上给出了优秀的结果,可以预见未来用深度学习完成图形学任务的工作会快速增长。今年的GIRAFFE是NeRF的后续工作之一,它摘下2021CVPR的最佳论文奖对整个方向的繁荣都起到积极的推动作用。

本文希望讨论以下问题:

  • NeRF被提出的基础(2 前NeRF时代);
  • NeRF是什么(3 NeRF!);
  • NeRF的代表性follow-up工作(4 后NeRF时代);
  • 包含NeRF的更宽泛的研究方向Neural Rendering的简介(5 不止是NeRF)。

2 前NeRF时代

2.1 传统图形学的渲染

本质上,NeRF做的事情就是用深度学习完成了图形学中的3D渲染任务。那么我们提两个问题。

  • 问题1:3D渲染是要干什么?

看2个比较官方的定义。

MIT计算机图形学课程EECS 6.837对渲染(Rendering)的定义:

“Rendering” refers to the entire process that produces color values for pixels, given a 3D representation of the scene.

综述State of the Art on Neural Rendering对渲染(Rendering)的定义:

The process of transforming a scene definition including cameras, lights, surface geometry and material into a simulated camera image is known as rendering.

也就是说,渲染就是用计算机模拟照相机拍照,它们的结果都是生成一张照片。

用照相机拍照是一个现实世界的物理过程,主要是光学过程,拍照对象是现实世界中真实的万事万物,形成照片的机制主要就是:光经过镜头,到达传感器,被记录下来。

而渲染就是用计算机模拟这一过程,模拟“拍照”的对象是已存在的某种三维场景表示(3D representation of the scene),模拟生成照片的机制是图形学研究人员精心设计的算法。

关键前提:渲染的前提是某种三维场景表示已经存在。渲染一词本身不包办生成三维场景表示。不过,渲染的确与三维场景表示的形式息息相关;因此研究渲染的工作通常包含对三维场景表示的探讨。

  • 问题2:3D渲染是图形学问题,那么原先大家是用什么传统图形学方法实现3D渲染的呢?

主要有两种算法:光栅化(rasterization),光线追踪(ray tracing);都是对照相机拍照的光学过程进行数学物理建模来实现的。

Rrasterization,Ray Tracing

传统渲染的详细原理参阅此教材

光栅化是一种前馈过程,几何体被转换为图像域,是上世纪比较早的算法。光线追踪则是将光线从图像像素向后投射到虚拟三维场景中,并通过从与几何体的交点递归投射新光线来模拟反射和折射,有全局光照的优势(能模拟光线的多次反射或折射)。

当下,在学术界,还在研究传统图形学的渲染算法的人应该大部分在搞优化加速,怎么用GPU实时渲染更复杂的场景之类的事儿。在工业界,不少游戏重度依赖渲染技术,所以应该也有不少游戏公司在研究更逼真、更快速、更省算力的渲染算法。去年虚幻引擎出的新款“虚幻引擎5”效果很是震撼,光照、纹理、流体的实时渲染模拟都逼真到了前所未有的新高度,可以看下虚幻引擎官方的宣传视频,真的很不错。

虚幻引擎5

2.2 神经网络侵略3D渲染任务:NeRF呼之欲出

隐式场景表示(implicit scene representation)

基于深度学习的渲染的先驱是使用神经网络隐式表示三维场景。 许多3D-aware的图像生成方法使用体素、网格、点云等形式表示三维场景,通常基于卷积架构。 而在CVPR 2019上,开始出现 使用神经网络拟合标量函数 来表示三维场景的工作。

DeepSDF

2019年CVPR的DeepSDF或许是最接近NeRF的先驱工作。

SDF是Signed Distance Function的缩写。DeepSDF通过回归(regress)一个分布来表达三维表面的。如下图所示,SDF>0的地方,表示该点在三维表面外面;SDF<0的地方,表示该点在三维表面里面。回归这一分布的神经网络是多层感知机(Multi-Layer Perceptron,MLP),非常简单原始的神经网络结构。

DeepSDF

NeRF比DeepSDF进步的地方就在于,NeRF用RGBσ代替了SDF,所以除了能推理一个点离物体表面的距离,还能推理RGB颜色和透明度,且颜色是view-dependent的(观察视角不同,同一物点的颜色不同),从而实现功能更强大的渲染。

3 NeRF!

建议前往NeRF项目网站查看视频效果图。

3.1 Radiance Fields(RF)

NeRF是Neural Radiance Fields的缩写。其中的Radiance Fields是指一个函数、或者说映射gθ 。

(σ,c)=gθ(x,d)

映射的输入是 x 和d 。 x∈R3是三维空间点的坐标, d∈S2 是观察角度。

映射的输出是 σ 和 c 。 σ∈R+ 是volume density(可以简单理解为不透明度), c∈R3 是color,即RGB颜色值。

Radiance Fields(RF)

Radiance Fields,或者说映射 gθ ,能对三维场景进行隐式表示(implicit scene representation)。在上一节,我们说过某种三维场景表示正是渲染的前提。实现渲染也是 作者提出Radiance Fields这一新型三维场景表示方法 的目的所在。

3.2 Neural Radiance Fields(NeRF)

Radiance Fields是映射gθ 。那么Neural Radiance Fields则是指用神经网络拟合Radiance Fields gθ 。论文中,该神经网络具体是多层感知机(与DeepSDF一样)。

Neural Radiance Fields(NeRF)

3.3 NeRF的体积渲染

NeRF(Neural Radiance Fields)其实是一种三维场景表示(scene representation),而且是一种隐式的场景表示(implicit scene representation),因为不能像point cloud、mesh、voxel一样直接看见一个三维模型。

NeRF将场景表示为空间中任何点的volume density σ 和颜色值 c 。 有了以NeRF形式存在的场景表示后,可以对该场景进行渲染,生成新视角的模拟图片。论文使用经典体积渲染(volume rendering)的原理,求解穿过场景的任何光线的颜色,从而渲染合成新的图像。

NeRF volume rendering

3.4 NeRF的训练

训练NeRF的输入数据是:从不同位置拍摄同一场景的图片,拍摄这些图片的相机位姿、相机内参,以及场景的范围。若图像数据集缺少相机参数真值,作者便使用经典SfM重建解决方案COLMAP估计了需要的参数,当作真值使用。

在训练使用NeRF渲染新图片的过程中,

  • 先将这些位置输入MLP以产生volume density和RGB颜色值;
  • 取不同的位置,使用体积渲染技术将这些值合成为一张完整的图像;
  • 因为体积渲染函数是可微的,所以可以通过最小化上一步渲染合成的、真实图像之间的差来训练优化NeRF场景表示。

这样的一个NeRF训练完成后,就得到一个 以多层感知机的权重表示的 模型。一个模型只含有该场景的信息,不具有生成别的场景的图片的能力。

除此之外,NeRF还有两个优化的trick:

  • 位置编码(positional encoding),类似于傅里叶变换,将低维输入映射到高维空间,提升网络捕捉高频信息的能力;
  • 体积渲染的分层采样(hierarchical volume sampling),通过更高效的采样策略减小估算积分式的计算开销,加快训练速度。

4 后NeRF时代

GIRAFFE:composition方向的代表作

2021CVPR的最佳论文奖得主GIRAFFE是NeRF、GRAF工作的延申。

在NeRF之后,有人提出了GRAF(Generative Radiance Fields),关键点在于引入了GAN来实现Neural Radiance Fields;并使用conditional GAN实现对渲染内容的可控性。

在GRAF之后,GIRAFFE实现了composition。在NeRF、GRAF中,一个Neural Radiance Fields表示一个场景,one model per scene。而在GIRAFFE中,一个Neural Radiance Fields只表示一个物体,one object per scene(背景也算一个物体)。这样做的妙处在于可以随意组合不同场景的物体,可以改变同一场景中不同物体间的相对位置,渲染生成更多训练数据中没有的全新图像。

GIRAFFE实现composition

如图所示,GIRAFFE可以平移、旋转场景中的物体,还可以在场景中增添原本没有的新物体。

另外,GIRAFFE还可以改变物体的形状和外观,因为网络中加入了形状编码、外观编码变量(shape codes zsi , appearance codes zai )。

其他最新相关工作

2021年CVPR还有许多相关的精彩工作发表。例如,提升网络的泛化性:

  • pixelNeRF:将每个像素的特征向量而非像素本身作为输入,允许网络在不同场景的多视图图像上进行训练,学习场景先验,然后测试时直接接收一个或几个视图为输入合成新视图。
  • IBRNet:学习一个适用于多种场景的通用视图插值函数,从而不用为每个新的场景都新学习一个模型才能渲染;且网络结构上用了另一个时髦的东西 Transformer。
  • MVSNeRF:训练一个具有泛化性能的先验网络,在推理的时候只用3张输入图片就重建一个新的场景。

针对动态场景的NeRF:

  • Nerfies:多使用了一个多层感知机来拟合形变的SE(3) field,从而建模帧间场景形变。
  • D-NeRF:多使用了一个多层感知机来拟合场景形变的displacement。
  • Neural Scene Flow Fields:多提出了一个scene flow fields来描述时序的场景形变。

其他创新点:

  • PhySG:用球状高斯函数模拟BRDF(高级着色的上古神器)和环境光照,针对更复杂的光照环境,能处理非朗伯表面的反射。
  • NeX:用MPI(Multi-Plane Image )代替NeRF的RGBσ作为网络的输出。

5 不止是NeRF:Neural Rendering

Neural Radiance Fields的外面是Neural Rendering;换句话说,NeRF(Neural Radiance Fields)是Neural Rendering方向的子集。

在针对这个更宽泛的概念的综述State of the Art on Neural Rendering中,Neural Rendering的主要研究方向被分为5类,NeRF在其中应属于第2类“Novel View Synthesis”(不过这篇综述早于NeRF发表,表中没有NeRF条目)。

Neural Rendering的5类主要研究方向

表中彩色字母缩写的含义:

在这篇综述中,Neural Rendering被定义为:

Deep image or video generation approaches that enable explicit or implicit control of scene properties such as illumination, camera parameters, pose, geometry, appearance, and semantic structure.

Neural Rendering包含所有使用神经网络生成可控(且photo-realistic)的新图片的方法。“可控”指人可以显式或隐式地控制生成新图片的属性,常见的属性包括:光照,相机内参,相机位姿(外参),几何关系,外观,语义分割结构。在这个大框架下,NeRF是一种比较受欢迎的可控相机位姿的Neural Rendering算法。但Neural Rendering这个方向不止于此。

在目前的Neural Rendering方向,最火的子方向就是“Novel View Synthesis”,这与NeRF的强势蹿红密不可分;第二火的子方向是“Semantic Photo Synthesis”,这主要归功于语义分割以及相关的GAN领域的成熟度。“Semantic Photo Synthesis”方向也是成果颇丰,例如2019年CVPR的Semantic Image Synthesis with Spatially-Adaptive Normalization,其效果图如下。

Semantic Image Synthesis

相关资源

Github论文收集仓库

小仓库(仅限于NeRF):

https://github.com/yenchenlin/awesome-NeRF

大仓库(neural rendering):

https://github.com/weihaox/awesome-neural-rendering

综述论文

可以说是官方综述,作者列表是目前在Neural Rendering领域最活跃的一群人。两篇分别是2021、2020年的SIGGRAPH、CVPR讲座用到的综述,很全面很有条理,值得每位从业者一读!

SIGGRAPH 2021 Course: Advances in Neural Rendering

CVPR 2020 Tutorial: State of the Art on Neural Rendering

范围限定为可微渲染方法的综述:

Differentiable Rendering: A Survey

上面小仓库的库主(MIT博士生Yen-Chen Lin)写的综述:

Neural Volume Rendering: NeRF And Beyond

论文

列论文实在挂一漏万,象征性地放上本文提到的2篇很重要的论文吧。

NeRF项目主页:

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

GIRAFFE项目主页:

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

教材

传统图形学渲染技术:

Real-Time Rendering 3rd

计算机视觉经典教材,含有image-based rendering章节:

Computer Vision: Algorithms and Applications

三篇Georgia Tech老师写的博客

NeRF at CVPR 2022 – Frank Dellaert

NeRF at ICCV 2021 – Frank Dellaert

NeRF Explosion 2020 – Frank Dellaert

离散形式

推导一下连续形式变为离散形式的运算。

计算机求解积分式的办法一般是化为黎曼和。在这里,如果我们每次都将积分区间划分为固定的、等间距的窄长方形面积和,其实就失去了NeRF是连续场景表示的优势:因为虽然每个点的RGBσ都可以访问,但是实际上你还是只用了固定点的值求积分。

OpenAI 代码生成模型 Codex: Evaluating Large Language Models Trained on Code

Codex

https://openai.com/blog/openai-codex/

Evaluating Large Language Models Trained on Code

Copilot的核心技术:给定函数名和功能描述,可以自动进行代码补全,或者给定代码,给出相关文档。作者团队收集了Github上所有的不重复的python代码,总计179GB,并进行了简单过滤(去掉了过大的文件(>1MB)和过长的代码(>100行或单行超过1000个字符)),在数据集上面训练了一个GPT3模型。

作者团队手动编写了164个函数(避免数据泄漏),每个函数包括代码、文档以及单元测试,平均每个问题包括7.7个测试样例,用于评估模型。Codex 12亿参数的模型能解决28.8%的问题,3亿参数的模型能解决13.2%的问题,作者团队又收集了一个跟测试集差不多的数据集用于模型微调,微调以后,得到Codex-S可以解决37.7%的问题。而使用 repeated sampling,即运行一百次模型,只要有一个输出解决了问题就算成功的话,那么Codex-S能解决77.5%的问题(CodeX能解决70.2%),而如果选择100个输出中概率最高的输出,则能解决44.5%的问题。

细节

1. 目标函数没有使用BLEU(困惑度),因为代码不同于自然语言,即使特别相似,但仍然可能不是一个合法的语句,作者使用:

来评估模型,即生成n个输出(n>k),从中随机抽取k个输出,这k个输出只要有一个能通过单元测试的概率.

代码近似计算pass@k(为什么要近似:如果k,n很大,计算很复杂)

2. 输出代码的测试在沙盒中进行(生成的代码可能是恶意的,会让你的机器出现问题)

3. 在GPT3原有模型上微调并不能取得更好的效果,但会加速收敛

4、代码里面的空格如果不做处理会带来很多不必要的词进去,对空格做特殊处理后会减少30%的词

5. 当模型输出‘\nclass’, ‘\ndef’, ‘\n#’, ‘\nif’, or‘\nprint’等语句时,模型会终止推理,输出结果

6. 使用nucleus sampling(核采样):选择概率总和p=95%的前k个输出用于评估模型

7. 对输出做softmax得到概率之前,会除以一个超参数Temperature,来调节不同输出之间的概率差距,当pass@k中的采样数k越大时,T越大效果越好

8. 收集了跟测试集类似的数据集用于微调,1)从各种比赛中收集赛题(大约一万个),2)从Continuous Integration中收集了约40000个函数和单元测试,并过滤(CodeX对每个问题生成一百个输出,如果能解决通过测试用例则保留该样本,反之则去掉(不能通过表示该问题太难或测试用例有问题)),在这个数据集上继续训练,训练方式相同,只是该数据集有“标准答案”,得到模型Code-S

9. 使用收集到的github数据集,重新训练一个GPT3模型用于反向生成文档,Codex-D,评测Codex-D模型好坏的方式是,一是人阅读文档评测模型好坏,二是使用生成的文档重新生成代码,看能否通过单元测试

模型局限性

1. 样本有效性不够,需要训练很多的代码,模型才能输出比较简单的实验

2. Prompt应该怎么写才能获得比较理想的代码,作者找了13 basic building block(对字符串做一些简单的操作:如改变大小写、变换位置等),将文档块任意串起来,发现文档越长,生成代码的质量越差,说明docstring不宜过长

3. 对于精确、复杂的数学问题很难生成正确的代码

模型潜在的影响

1. 过度依赖:人可能会过度依赖生成的代码,如果使用者不仔细审查代码,可能会给程序带来潜在的问题

2. Misalignment:模型足够复杂的时候,可能能输出期望的代码,但如果给定一个docstring,可能只能输出一个跟训练数据风格相似,看上去正确,但并不是期望的代码

3. github男性用户居多,所写的代码可能包含性别偏见

4. 市场和经济:很多程序员可能会失业?如果训练数据里的代码对于某些包使用较多,可能导致某些特别的工具使用率增多。

5. 安全:可能某些人用它写病毒和恶意软件

6. 训练这样一个模型需要使用很多资源

7. 法律:使用的是公开代码,fair use(对公共社会有好处的话并没有什么问题),但用于商业行为可能会有法律风险,生成的代码可能跟别人一模一样,可能存在抄袭别人具有版权或者专利保护的代码的风险。

总结

作者爬了很多github的代码,训练了一个GPT3的模型,为了评估模型的效果,准备了146到题用于测试,发现大概能解决大概30%的题,效果还不错,为了进一步提高分数,又收集了一个跟测试集相似的数据集,在上面微调。

GitHub Copilot

Copilot 相比论文codex中的区别:模型都是采用GPT3,但是 Copilot 使用的数据集不仅仅是python,还有其他语言的代码作为数据集。 GitHub 上公开可用存储库的数十亿行代码的训练 。

Copilot 作为一个辅助编程工具,GitHub Copilot 可以通过提供自动完成样式的建议来帮助你编写代码。GitHub Copilot 是一个 AI 配对程序员,可在编写代码时提供自动完成样式的建议。 可以从 GitHub Copilot 接收建议,方法是开始编写要使用的代码,或者编写描述代码要执行的操作的自然语言注释。 GitHub Copilot 会分析你正在编辑的文件以及相关文件中的上下文,并在文本编辑器中提供建议。 GitHub Copilot 由 OpenAI Codex 提供支持,OpenAI Codex 是一个由 OpenAI 创建的新 AI 系统。

不仅是关键字的自动补全,语法建议,调试建议等。而是帮助开发者更快速的完成业务代码编写。简而言之,GitHub Copilot 是一种 AI 工具,可根据命名或者正在编辑的代码上下文为开发者提供代码建议。

根据官方介绍,Copilot 已经接受了来自 GitHub 上公开可用存储库的数十亿行代码的训练,它支持大多数编程语言,但官方建议使用 Python、JavaScript、TypeScript、Ruby 和 Go。Copilot 是 GitHub 和OpenAI合作的结果, OpenAI得到了微软的大力支持。它由一个名为 Codex 的全新 AI 系统提供支持,该系统基于 GPT-3 模型

后续工作:

DeepMind AlphaCode 

DeepMind推出了自动写算法竞赛题的AI AlphaCode,宣称目前在Codeforces比赛中能排到中位数。Transformer + 超大数据集来做code generation。虽然现在也有很多工作用transformer做代码预训练,或者做代码翻译或者生成。但是从这么长的题面去生成竞赛的代码确实是头一次。

AlphaCode 参加的是一个名为 Codeforces 的在线编程平台。虽然我并不熟悉 Codeforces,但曾经为了准备面试刷过 LeetCode。如果说 LeetCode 就是为了程序员进互联网大厂刷题而生,主要考察程序员的算法和数据结构的能力的话,那 Codeforces 是一个竞赛版的 LeetCode,Codeforces 上的题目更像 ACM ICPC 或者信息学奥林匹克竞赛。

Codeforces 上的题目五花八门,但是都需要参赛者编程求解。每个题目有描述,有输入样例,有正确的输出样例,即test cases。如果提交的程序能够将所有test cases都跑出正确的结果,那么就算该题通过。一道题只有10次试错机会。

 AlphaCode 所求解的问题样例,深色的上半部分为编程问题描述,浅色的下半部分为 AlphaCode 生成的代码答案

Training:模型训练

AlphaCode 使用的经典的预训练+微调(Pretraining + Fine-tuning)范式。

预训练使用的是从 GitHub 爬下来的开源代码,经过了精细的预处理和清洗,大约有715GB。看到这个规模的训练数据,就知道只有屈指可数的几家巨无霸公司能够做这个预训练,实在是太大了,估计需要成千上万块GPU。预训练部分单纯就是让模型学习不同编程语言的套路,或者说学习编程语言中的语义和语法。

微调部分使用的是 CodeContests 数据集,这个数据集收集了很多类似 Codeforces 这样的编程平台上的编程题目、元数据以及人类正确和错误的代码提交结果。目的是针对 Codeforces 这样的编程竞赛,让模型学会如何生成对应的代码。这个数据集大约2GB。

AlphaCode 主要使用了编码器-解码器(Encoder-Decoder)的 seq2seq 方式建模。seq2seq 最经典的应用是机器翻译。给定源文本内容,Encoder 将自然语言编码为一些向量,Decoder 根据向量将自然语言解码为目标文本。那么对于AI自动写代码这个问题,就是输入编程题目,让模型生成目标代码。

Sampling & Evaluation:海量试错

图 AlphaCode架构图

上图为 AlphaCode 的架构,左侧(Data)为模型和数据部分,主要使用 Transformer 进行预训练和微调,右侧(Samping & Evaluation)是如何生成代码并参与 Codeforces 比赛。

AlphaCode 使用了经典的 Transformer 模型。有关 Transformer 的介绍,网络上已经有不少,我自己之前也写过一些 Transformer 和 BERT 的入门文章。关注深度学习的朋友都知道,Transfomer 作为当前大红大紫的AI模型,虽然在各个榜单上刷榜,但它并不具有人类基本的推理能力。

相比Transformer,我认为使得 AlphaCode 成功的主要在于这个 Sampling & Evaluation。这个 Sampling & Evaluation 系统有点类似搜索引擎或者推荐引擎。AI拥有存储和制作海量内容的能力,但无法知道人类真正需要什么。最关键的就是如何从海量内容中进行筛选。搜索或推荐引擎一般会对海量内容进行检索,最终呈现给用户的只有几条内容。海量的内容需要经过几大步骤:召回、粗排、精排、重排。其实就是先从海量的内容库中,先粗略筛选出一万篇的内容,再使用更精细的模型对一万篇进行一次次筛选,最终选择出与用户需求最相关的几篇内容。

AlphaCode 使用了一个 Transformer 模型,根据编程题目描述,生成百万份代码,这些生成的代码中99%可能根本跑不通。AlphaCode 使用编程题目中的test cases,验证这些生成的代码,这个过程会过滤掉99%的错误代码。

经过过滤之后,仍然可能有上千份代码能跑通,而且这些能跑通题目给出的测试样例的代码中很多非常相似。一个编程题目只有10次提交机会,每一次提交的机会都非常珍贵。不可能将上千份代码都提交上去。AlphaCode 这时候做了一个聚类(Clustering)。首先:AlphaCode 使用了第二个 Transformer 模型,根据编程题目中的文字描述,自动生成一些test cases。但是生成的test cases并不保证准确性,它是为了接下来的聚类用的。然后:将生成的test cases喂给那些代码,如果一些代码的生成结果近乎一样,说明这些代码背后的算法或逻辑相似,可被归为一类。文章称,经过聚类之后,从数目较大的类中选出代码去提交,更有胜算。

上图演示了这个过程,大致包括四步:

  1. 根据编程题目中的描述等信息,使用第一个Transformer模型,生成百万份代码。
  2. 使用编程题目中的测试样例test cases验证这百万份代码,把不能通过的过滤掉,剩下大约上千份代码。
  3. 使用第二个Transformer模型,生成一些test cases。
  4. 使用第3步生成的test cases,对第2步留下的代码进行验证并聚类,如果两份代码得到的结果相同,则分到同一类。经过聚类后,最终留下10类代码。

Capabilities & Limitations:能力和限制

深度学习是黑盒模型,我们不知道到底模型学到了什么,能否像人类一样认知和推理。论文花了很大精力和篇幅讨论了 AlphaCode 的能力和限制。

作者们提出了一个论点,即 AlphaCode 并不是单纯从训练数据中寻找相似解法,或者说 AlphaCode 并不是单纯从训练数据中拷贝代码。作者的验证方法是对比了生成的代码和训练集中的代码中的代码片段重合的情况,或者说检验 AlphaCode 是不是单纯从训练集里找一些核心代码片段并直接拷贝过来。因此,作者们认为,AlphaCode 具有解决新问题的能力,而不是照猫画虎地把训练数据拷贝搬运过来。知乎上有信息学竞赛选手感慨,有些题目对于人类专业选手来说都很难快速想出解法,但 AlphaCode 却能够得到答案。

作者们发现,模型生成的代码非常依赖编程题目中的描述。比如,同样一个解法,题目描述越冗长,AlphaCode 的求解准确度越低。但是对编程题目的一些其他改变对求解影响不大,比如更改变量名、同义词替换等。

总结

作者认为,AlphaCode 能够击败半数人类选手,主要原因在于:

  1. 训练数据足够大且质量高。
  2. Transformer 预训练模型能够将训练数据中涵盖的知识编码到模型中。
  3. Sampling & Evaluation 的海量试错机制,先生成海量可能的答案,再一步步缩小搜索空间。

阅读完论文和一些解读之后,我感觉至少短期内,离AI替代程序员应该还有一段距离。但是,未来,可真不好说…

不完全统计的Code预训练模型

微软亚洲研究院的CodeXGLEU,是近几年对代码智能任务整理最全的一个benchmark.

https://microsoft.github.io/CodeXGLUE/

GPT系列论文:生成式预训练与零样本学习

本文的主要参考是李沐老师关于 GPT 系列的解读:论文精读

GPT1: Improving Language Understanding by Generative Pre-Training (Generative Pre-Train Model 就是GPT模型的名字由来)

GPT2: Language Models are Unsupervised Multitask Learners

GPT3: Language Models are Few-Shot Learners

GPT3开发的demo: https://gpt3demo.com/

GPT-3: Demos, Use-cases, Implications

More concretely:

  • Language model performance scales as a power-law of model size, dataset size, and the amount of computation.
  • A language model trained on enough data can solve NLP tasks that it has never encountered. In other words, GPT-3 studies the model as a general solution for many downstream jobs without fine-tuning.

关于BERT和GPT

Transformer/BERT/GPT 时间线:Transformer —> GPT —> BERT —-> GPT2 —> GPT3。

如果去查 GPT 系列和 BERT 的引用数量,会发现 BERT 一篇的引用比 GPT 系列三篇加起来还多几倍,因此 BERT 在学界影响力更大是毋庸置疑的。但这并不能说明 BERT 的预训练任务就比 GPT 的更 “好”。首先,GPT 早于 BERT 提出在无监督的语料上进行大规模预训练,BERT 一定程度上也是受到 GPT 的启发。其次,GPT 的预训练任务是标准的语言模型(Language Model),即自回归式(auto-regressive)地预测句子中的下一个单词,相比于 BERT “完形填空” 式的预训练任务,无疑要难上许多。这使得 GPT 必须模型够大、数据够多才能训练起来,得到比较好的结果。这也是为什么 BERT 只有一篇论文,而 GPT 还有 GPT-2、GPT-3,通过不断扩增模型和数据的规模,最终使得 GPT-3 有如此惊艳的效果。对于这样困难的预训练任务和巨大的资源需求,一般的公司或个人根本玩不转。而 BERT 由于任务难度较小,相对并不需要那么多资源就可以进行预训练和微调,这也是为什么 BERT 的后续工作那么多(体现在引用量上)。但是,语言模型预测下一个单词的生成式任务,使得 GPT 的上限极高,GPT-3 通过写出足以以假乱真的文章,成为了最火出圈的 NLP 模型。另外,由于语言模型生成式任务的灵活性和巨大的预训练规模,GPT 甚至可以不需要(更新模型参数的)微调,而是通过文本 prompt 提示,就可以直接处理下游任务。

另外,很多人喜欢从从模型结构上来将 BERT 和 GPT 进行区分:BERT 使用了 Transformer 的编码器,适合于判别式任务;GPT 使用了 Transformer 的解码器,适合于生成式任务。然而,使用什么样的模型结构并不是 BERT 和 GPT 的本质区别。二者的本质区别在于选用了什么样的预训练目标函数,选用 Transformer 的编码器或解码器只是在确定了目标函数之后的必然选择。GPT 选用的是标准语言模型的目标函数,预测句子中的下一个单词,此时模型应该只能看到当前词和它之前的词,所以必须将当前词后面的词全部 mask 掉,故而选用带有 masked self-attention 的 Transfomer 解码器;而 BERT 是设计了一种 “完形填空” 式的预训练任务,根据当前词前后的内容还原当前词,此时模型应该可以看到整个序列的所有单词(当前词已被替换为特殊 token),故而选用了 Transformer 的编码器。当然,在讨论 BERT 与 GPT 时,将它们各自选用的架构作为直观的区分方式也是没有问题的。

GPT-1

Paper:Improving Language Understanding by Generative Pre-Training

前言

GPT 首先提出了在无监督的大规模预料上进行预训练,再在下游任务上进行微调的训练范式。至于为什么使用 Transformer 模型,而非 RNN,作者指出:Transformer 模型有更结构化的记忆(more structured memory),能够更好地处理文本中的长距离(long-term)依赖关系,从而能更好地抽取出句子层面和段落层面的语义信息,因此在迁移学习中,Tranformer 学习到的特征更加稳健。在迁移学习时,GPT 设计了各种任务相关(task-specific)的输入表示。

这里所谓的更结构化的记忆、长距离文本信息的论述,笔者是这样理解的:RNN(如 LSTM) 需要一步一步地处理序列内容,如果序列距离过长,可能走到后面时,前面的信息会有所丢失;而在 Transformer 中,自注意力机制的计算是完全并行的,序列的位置信息是通过位置嵌入来编码的,就不会有这个问题,即李宏毅老师所说的:“天涯若比邻”。

方法

原文方法部分分为三个小节,分别介绍如何在无标注的数据上进行自监督预训练、怎样进行微调、怎样对于不同的 NLP 下游任务构造输入。

预训练:

微调

方法部分的第二小节介绍了如何在预训练完成之后,在下游任务上进行微调。

假设有带标签数据集C ,其中每个样本是一个由一系列单词组成的句子和标签 y 组成。将句子输入到 GPT 模型中,取最后一个 transformer block 最后一个单词的输出特征,将它送入到线性层中进行预测:

不同任务的输出构造

介绍完如何微调之后,接下来就要介绍如何将 NLP 中不同的下游任务的输入表示成第二小节中句子+标签 的形式。如下图右侧所示,图中展示了几种不同类型的 NLP 下游任务适配 GPT 预训练模型的输入构造方法:

分类任务

  • 任务简介:任务给定一段文本,输出分类结果。例如:情感分类。
  • 构造方法:将给定的文本首尾各加上一个 token Start/Extract,然后送到 GPT 预训练模型中,将输出特征接一个线性层进行分类。分类任务与之前微调小节介绍的做法是完全一致的,

蕴含任务(非对称性句子关系任务)

  • 任务简介:给定两段文本,判断前者对后者关系。例如:蕴含任务,判断第一句对第二句的关系是蕴含/不蕴含/无关。
  • 构造方法:将两个句子中间添加一个分割 token Delim,然后将整个文本的首尾再加上 Start/Extract,送入 GPT 预训练模型,将输出特征送入线性层分类。

相似度任务(对称性句子关系任务)

  • 任务简介:给定两段文本,判断二者关系。例如:相似度任务,判断两个句子是否相似。
  • 构造方法:将两个句子分别作为前句或后句,构造两个完整文本,各自送入 GPT 预训练模型,提取出特征并进行融合,再送入线性层分类。

多选任务

  • 任务简介:给定一段文本和多个答案,判断哪个正确。
  • 构造方法:将给定文本和 N 个答案结合,构造 N 个完整文本,各自送入 GPT 预训练模型,提取出特征并送入线性层,取置信度最大者。

GPT模型结构(左)与微调下游任务输入构造方式(右)

注意图中的开始符(Start)、分隔符(Delim)、结束符(Extract)不是这几个单词本身,而是三个特殊的符号。

GPT-2

Paper:Language Models are Unsupervised Multitask Learners

前言

GPT 出现后不久,BERT 就提出了。通过新型的 MLM(Masked Language Model)任务和更大的模型、更大的训练数据量,在多项指标上超越了 GPT。GPT 的作者想要再次反超,首先肯定要扩大模型和数据的规模。但是除此之外,GPT-2 还有一个惊人的设定:zero-shot(零样本)。顾名思义,在 zero-shot 设定下,模型在预训练完成之后不需要任何下游任务的标注数据来进行微调,而是直接进行预测。

GPT-2 在研究思路上带给我们的启示是:有时候做研究不一定要在一个既定指标上死磕。在方法没有大创新的情况下,通过 “大力出奇迹” ,即使能够比之前方法有所提升,文章也会显得有些无聊。这时可以思考一些设定上的创新,如本文的 zero-shot,这时即使指标上提升不多甚至持平,也会有更有新意、更有趣。

方法

GPT2还是做语言模型,但是在做到下游任务的时候,会用一个叫做zero-shot的设定,zero-shot是说,在做到下游任务的时候,不需要下游任务的任何标注信息,那么也不需要去重新训练已经预训练好的模型。这样子的好处是我只要训练好一个模型,在任何地方都可以用。
如果作者就是在GPT1的基础上用一个更大的数据集训练一个更大的模型,说我的结果比Bert好一些,可能也就好那么一点点,不是好那么多的情况下,大家会觉得gpt2这篇文章就没什么意思了,工程味特别重。那么我换一个角度,选择一个更难的问题,我说做zero-shot。虽然结果可能没那么厉害了,没那么有优势,但是新意度一下就来了。

GPT-2 的模型跟 GPT-1 一样,这里就不再过多介绍。本节主要来说一下 zero-shot 要怎么做。

在 GPT-1 中,模型预训练完成之后会在下游任务上微调,在构造不同任务的对应输入时,我们会引入开始符(Start)、分隔符(Delim)、结束符(Extract)。虽然模型在预训练阶段从未见过这些特殊符号,但是毕竟有微调阶段的参数调整,模型会学着慢慢理解这些符号的意思。现在,在 GPT-2 中,要做的是 zero-shot,也就是没有任何调整的过程了。这时我们在构造输入时就不能用那些在预训练时没有出现过的特殊符号了。所幸自然语言处理的灵活性很强,我们只要把想要模型做的任务 “告诉” 模型即可,如果有足够量预训练文本支撑,模型想必是能理解我们的要求的。

举个机器翻译的例子,要用 GPT-2 做 zero-shot 的机器翻译,只要将输入给模型的文本构造成 translate english to chinese, [englist text], [chinese text] 就好了。比如:translate english to chinese, [machine learning], [机器学习] 。这种做法就是日后鼎鼎大名的 prompt。

在训练数据的收集部分,作者提到他们没有使用 Common Crawl 的公开网页爬取数据,因为这些数据噪声太多,太多无意义的内容。他们是去 Reddit 爬取了大量有意义的文本。作者还指出,在 Reddit 的高质量文本中,很可能已经有类似 zero-shot 构造方式的样本供模型学习。一个机器翻译的例子如下所示。

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding of Joliette, wrote in French: ”Mentez mentez, il en restera toujours quelque chose,” which translates as, ”Lie lie and something will always remain.

实验

在与同样为 zero-shot 模型的对比上,肯定是吊打了之前的 SOTA,这里就不展示了。可以关注一下下面 GPT-2 模型 zero-shot 性能关于模型规模的曲线。在有些任务上已经接近、超过之前某些有监督的方法;在比较困难的任务上,比如开放域问答,完全还看不到别人的影子。然而,看看曲线末端性能随模型规模提升的趋势,完全没有收敛的意思,这最后一段翘起的曲线,昭示着 GPT-3 继续大力出奇迹,从量变到质变的希望。

GPT-3

Paper:Language Models are Few-Shot Learners

前言

根据沐神关于论文价值给出的公式:论文价值 = 有效性 * 新意度 * 问题的大小。GPT-2 虽然通过 zero-shot 的设定,将自己的新意度凸显了出来,但是有效性(绝对性能)还是不太令人满意。GPT-3 ,众所周知的 “大力出奇迹” 式的文章,通过海量数据训练了一个 175 Billion 参数的预训练语言模型,性能直接拉满。甚至有点从量变到质变的意思,GPT-3 通过自回归式语言模型的生成能力,可以生成一些像模像样的文章,有时人类都很难读出这些文章是出自于 AI 模型生成,这也是为什么 GPT-3 能够成为 NLP 领域最火出圈的模型,文本生成能力使得它玩法众多。在任务设定上,GPT-3 没有固守于 GPT-2 的 zero-shot 方式。因为即使对于人类来说,要完成一个新任务,如果一个示例也不给的话,也有点强人所难了。如标题所示,GPT-3 采用了 few-shot 的任务设定,即给出下游任务的一两个例子,然后要求模型对该任务的新问题给出预测。当然,如此大规模的模型,即使是一两个样本,用梯度下降法微调模型权重也很费劲。因此,GPT-3 中所谓的 “few-shot”,与一般的根据支持集(下游任务示例)进行梯度下降更新参数的 few-shot 方法不同,它是利用自然语言的灵活性,将支持集示例放到 prompt 里,让模型自己理解示例,完成下游任务 few-shot 预测。

下图展示了 GPT-3 在不同的 NLP 任务上的性能随模型规模的变化,橙、绿、蓝分别代表 few-/one-/zero shot 方式,淡化的曲线是在不同任务上各自的准确率。实线是平均准确率。可以看到,随着模型规模的增大,性能还是有一定提升的。

方法

GPT-3 的预训练方式和之前还是一样的,模型结构也改动不大。还是在 Transformer 解码器上做标准语言模型的预训练,但是模型规模和数据规模大了几个数量级。这里我们还是主要来看一下 GPT-3 中所谓的 few-/one-/zero- shot 方式分别是什么意思。

下图展示了 GPT-3 中的 few-/one-/zero- shot 方式与常规的微调方式。

  • 微调方式的小样本学习,需要根据给出的下游任务样本和标注,构造损失函数,方向传播梯度,更新模型权重,然后进行预测。GPT-3 中完全没有采取这种方式。
  • Zero-shot,给定任务描述,如 Translate English to French,然后直接给出问题,要求模型给出答案。这种方式与 GPT-2 一致。
  • One-shot,给定任务描述,然后给一个例子,包括问题和答案,如 sea otter => loutre de mer,之后再给出问题,将上述整一段文本作为输入,要求模型给出答案。这种方式期望模型利用预训练阶段海量的文本数据积累和 Tranformer 的自注意力机制,理解问题和示例,然后仿照示例给出预测。
    笔者认为这种方式可行的根本原因是自然语言的灵活性和生成式模型的创造性,使得我们能够直接跟模型进行交互,把要做什么任务、任务示例直接 “打字告诉它”。在计算机视觉领域,好像很难做到类似的事情。
  • Few-shot,与 One-shot 类似,只是给的示例更多。

GPT-3 中的任务设定很惊艳,但是细想之下,也是无奈之举并且也有缺点。一方面,模型规模实在太大,微调来更新权重参数不可行,只好采用 few-shot 的方式。另一方面,模型权重不能更新,每次理解下游任务之后不能保存下来,也就是说每次做同一个下游任务都要给同样的例子。还有,下游任务的示例也不能太多,因为模型可能无法处理过长的输入序列。如果在我们的实际下游任务中确实有不少可供学习的样本,GPT-3 恐怕不是一个好的选择。所以,虽然 GPT-3 能做到的事情似乎听起来更接近 “人工智能”,但是相关的跟进工作并不多。

这应该是作者们充分挖掘模型能力,规避模型缺点,扬长避短设计出的任务设定,这种思路值得学习。

关于大规模预训练的调参、数据准备与清洗、工程实践等,GPT-3 论文中也有讨论,这里就不提了,有兴趣可以参考原文。

再后面关于实验、GPT-3 的不足以及可能的社会影响作者写了很多,本文主要关注算法部分,后面就不一一介绍了,同样请参考原文。

Ref

OpenAI 开源语音识别模型 Whisper & 相关应用

Robust Speech Recognition via Large-Scale Weak Supervision

https://github.com/openai/whisper

Blog:https://openai.com/blog/whisper/

论文精度

OpenAI Whisper 

拥有 GTP-3 语言模型,并为 GitHub Copilot 提供技术支持的人工智能公司 OpenAI 近日开源了 Whisper 自动语音识别系统,Open AI 强调 Whisper 的语音识别能力已达到人类水准。

Whisper 是一个自动语音识别(ASR,Automatic Speech Recognition)系统(transformer模型),OpenAI 通过从网络上收集了 68 万小时的多语言(98 种语言)和多任务(multitask)监督数据对 Whisper 进行了训练。OpenAI 认为使用这样一个庞大而多样的数据集,可以提高对口音、背景噪音和技术术语的识别能力。除了可以用于语音识别,Whisper 还能实现多种语言的转录,以及将这些语言翻译成英语。OpenAI 开放模型和推理代码,希望开发者可以将 Whisper 作为建立有用的应用程序和进一步研究语音处理技术的基础。

Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection

Whisper 执行操作的大致过程:

输入的音频被分割成 30 秒的小段、转换为 log-Mel 频谱图,然后传递到编码器。解码器经过训练以预测相应的文字说明,并与特殊的标记进行混合,这些标记指导单一模型执行诸如语言识别、短语级别的时间戳、多语言语音转录和语音翻译等任务。

相比目前市面上的其他现有方法,它们通常使用较小的、更紧密配对的「音频 – 文本」训练数据集,或使用广泛但无监督的音频预训练集。因为 Whisper 是在一个大型和多样化的数据集上训练的,而没有针对任何特定的数据集进行微调,虽然它没有击败专攻 LibriSpeech 性能的模型(著名的语音识别基准测试),然而在许多不同的数据集上测量 Whisper 的 Zero-shot(不需要对新数据集重新训练,就能得到很好的结果)性能时,研究人员发现它比那些模型要稳健得多,犯的错误要少 50%。

目前 Whisper 有 9 种模型(分为纯英文和多语言),其中四种只有英文版本,开发者可以根据需求在速度和准确性之间进行权衡,以下是现有模型的大小,及其内存要求和相对速度:

Whisper的表现因语言而异。下图显示了使用largeV2模型使用Fleurs数据集的语言进行细分。

论文:稳健的语音识别通过大规模的弱监督

弱监督的意思是指我们的语音数据是有标号的,但是标号的可行度不是那么高,质量一般这也是,这也是作者能够采集到近70万h的数据的原因。(在样本数量和质量之间做权衡)

摘要

我们研究了互联网上的大量的训练好的的语音处理系统的功能。当把我们的数据集扩大到680,000小时,且是一个多语言和多任务监督训练时,最终的模型可以与在标准数据集训练好的其他模型相比具有相同的效果,但whisper无需进行任何微调,在面对新数据集时候无需微调。与人类相比,模型具有准确性和鲁棒性。我们正在发布模型和推理代码,以作为在强大语音处理上进一步工作的基础。

引言

目前主流的语音识别方法是先进行大规模的无监督预训练(Wav2Vec 2.0),比如, Wav2Vec 采集了1000000h的无标签训练数据,先用这些数据进行预训练一个编码器(使用对比学习 or 字训练),encoder能够对语音数据做一个很好的编码,然后在面向下游任务时,可以在标准训练集中做微调(只需要几十小时的数据就可),这样比只在标准数据集上训练的结果好很多。

这些预训练好的语音编码器能够学习到语音的一个高质量表示,但是用无监督方法训练的编码器仍然需要训练一个解码器,需要用带标签的数据来微调,微调是一个很复杂的过程,如果不需要微调就好了,这也是本文要做的工作。此外,过去的工作缺乏一个很好的解码器,这是一个巨大的缺陷,而语音识别系统就是应该是“out of box”,也就是拿来即用。

有监督学习很多方法是把多个有监督的数据集合并成一个大的数据集,这样确实保证比在单个数据集上的准确性和泛化性都要好,但是之前的工作最多也就是5000h的数据集,跟之前的100万h的无监督数据集相比差的太多。

顺着这个思路,如果我们把数据集的标号放松一下,就会获得个更多的数据集。在数量和质量之间做权衡是一个不错的选择,比如在yutube上采集视频和字幕作为数据集,为了追求样本的多样性和数量,稍微降低一点质量也是可以的。因此本文就是把弱监督数据集扩展到了68万h,并将模型取名whisper.

方法

数据处理:不需要对标号做任何后处理。从互联网中采集到的数据多种多样,比如声音的环境、录制的设备、说话的人、语言。这样让模型更加稳健,但是对应的我们希望标号质量应该要一致,因此需要做一个过滤系统,把一些质量差的文本删除(一般是一些机器自动生成的文本,如果使用其作为标号,那训练出来的模型效果也不会很好)、去重等等。训练数据30s以及对应的标号作为一个样本。

数据部分是本文最核心的贡献。由于数据够多,模型够强,本文模型直接预测原始文本,而不经过任何标准化(standardization)。从而模型的输出就是最终识别结果,而无需经过反向的文本归一化(inverse text normalization)后处理。所谓文本归一化包括如将所有单词变小写,所有简写展开,所有标点去掉等操作,而反向文本归一化就是上述操作的反过程。在 Whisper 中,这些操作统统不用,因为数据足够多,可以覆盖所有的情况。

在本文收集的语音数据中,包含了不同环境、不同语言、不同说话人等多样的数据,这有助于训练出文件的语音识别系统。然而,文本标签的多样性对模型的学习是一种阻碍。为了解决这个问题,本文使用了几种自动过滤方法,来提高文本标签的质量。

  • 首先,收集自互联网的语音识别数据,很有可能文本标签就是来自现有的语音识别系统的识别结果。之前有研究工作表明,在训练数据中混有机器生成的标签数据会损害模型的性能。为此,本文根据机器识别结果的一些特点,过滤掉了这些数据
  • 另外,本文对数据中语音所属语言和文本所属语言进行检测。如果文本是非英语的其他语言,则要求语音也必须是同种语言;如果文本是英语,则语音可以是任何语言(因为本文方法中有一个其他语言到英语的翻译任务)。
  • 本文用一个语音识别模型在收集的数据上进行测试,发现在一些错误率极高的数据中,存在音频信息不完整、字幕声音不匹配等低质量数据,这些数据同样会被过滤掉。

另外,可能在收集的数据中含有标准语音识别数据集中的内容,为了避免对测试结果产生影响,这部分数据同样需要去掉。

最后,将音频切分为 30s 的片段,配上对应文本,得到训练数据。

2、模型

由于我们的工作重点是研究大规模监督预训练的语音识别能力,因此我们使用现成的架构来避免将我们的发现与模型改进混淆。具体来说就是使用最原始的encoder-decoder Transformer (Vaswani et al., 2017)模型作为网络。将所有音频重新采样至16,000 Hz,80通道的Mel频谱图表示,其步幅为10毫秒。对于特征归一化,我们将输入归一化到-1和1之间,整个训练数据集的平均值约为零。

输入(80*3000)在送入transformer之前先经过卷积层(kernel=3),主要是考虑卷积具有局部相关性,输出80*1500,降低维度。剩下的部分就是一个经典 transformer 架构。

Whisper 使用的模型改动不大,就是 Transformer 第一次提出时的 encoder-decoder 架构。Whisper 的入出侧是声音信号,声音信号的预处理是将音频文件重采样到 16000 Hz,并计算出 80 通道的梅尔频谱,计算时窗口大小为 25ms,步长为 10ms。然后将数值归一化到 -1 到 1 之间,作为输入数据。可以认为是对于每一个时间点,提取了一个 80 维的特征。之前数据处理部分提到每个音频悲切氛围 30s 的片段,这里步长为 10,所以每 30 秒有 3000 个时间点。综上,对于一个 30 秒的音频数据,我们提取到形状为 3000×80 的特征。对应到 NLP 中,可以理解为句子长度为 3000,每个词的词嵌入维度为 80

3000×80 的输入数据首先通过两个 1D 卷积层,得到 1500×80 的特征。后面的处理就是标准的 Transformer encoder-decoder结构了。将这个特征送入到 Transformer encoder 中,提取处的特征作为交叉注意力输入送给 decoder。decoder 每次预测下一个 token,其输入是对应多任务学习的一些预设 token 和 prompt。

3、核心:多任务训练

虽然语音系统主要的任务是给一段话,把里面说的词识别出来,但是实际上大部分语言识别系统来说,还需要进行其他的后处理:检测是否有人说话(VAD)、谁在说话、识别的语音文本添加标点等等。作者希望一个模型可以同时做转录、VAD、时间戳、检测等等任务

all in one的方法会带来两个问题:比如要做VAD,可能我只需要一个小模型就可以完成,但现在必须要用这个超大模型。另外,假如我这个模型在某个任务表现不好,那么我需要多添加该任务数据继续训练,但继续训练,其他任务的效果是否会受影响。

具体任务如下:

一是给定英文语音,转录成英文文本;二是给定其他语言语音,转录并翻译成英文文本;三是给定其他语言语音,转录成该语言文本;四是给定只有背景音乐的音频,识别出无人说话。

所有这些任务都由解码器预测的 token 序列表示,从而使得一个模型能够处理多个任务。这几个任务及模型输出 token 的关系可以从图中下方的图示中的 token 序列看出:在 START OF TRANSCRIPT token 之后,如果当前无人说话,则识别为 NO SPEECH 。如果有人说话,则识别出当前语音所属的语言 LANGUAGE TAG 。然后有两种可能的任务 TRANSCRIBE 还是翻译任务 TRANSLATE ,这两种任务又分为两种形式:带时间戳的和不带时间戳的,分别穿插或不穿插时间戳 token ,预测出文本 token。最后到达 EOT token,整个流程结束。

那么如何训练这些任务呢?使用的是一个prompt格式,不同的任务通过不同的tokens组合来区别的,三种:特殊控制token、文本token、时间戳token

从起点开始,有一定概率走prev这个,表示前面一段我已经转录的内容(包括文本和时间戳),也有一定概率直接走到start token,然后学习语言类别token(包括99种语言+空白),接下来分两个token(转录还是翻译),然后有分两中(是否预测时间戳),有时间戳token则需要预测这句话的开始结束时间+内容,没有时间戳的话,直接预测这三十秒的文字,最后EOT结束。这样相比bert使用不同的输出头,对应不同的损失来说。whisper多任务只需要一个输出头,一个损失函数就可以,通过控制输入的流来控制不同的任务。但这样设计也有缺陷:某个任务表现不好,需要模型完全训练,这样对其他任务来说也会有影响,牵一发动全身。

实验

作者实验的数据集是模型训练集没有使用过的,认为是zero-shot。验证标准:WER

结论

Whisper 说明在语音识别领域,对于把大规模的弱监督训练的认识还是不够,我们的模型结果说明不需要做自监督 或者自训练,只要在大规模数据集上训练好模型,推理时无需任何微调,只需要zero-shot就可以。

基于Whisper开发应用工具:

AutoCut: 通过字幕来剪切视频

github: https://github.com/mli/autocut

AutoCut 使用 Whisper 来对你的视频自动生成字幕。然后在字幕文件中你选择需要保留的句子,AutoCut 将对你视频中对应的片段裁切并保存。你无需使用视频编辑软件,只需要编辑文本文件即可完成视频剪切。

假如你录制的视频放在 2022-11-04/ 这个文件夹里。那么运行

autocut -d 2022-11-04

提示:如果你使用 OBS 录屏,可以在 设置->高级->录像->文件名格式 中将空格改成 /,即 %CCYY-%MM-%DD/%hh-%mm-%ss。那么视频文件将放在日期命名的文件夹里。

AutoCut 将持续对这个文件夹里视频进行字幕抽取和剪切。例如,你刚完成一个视频录制,保存在 11-28-18.mp4。AutoCut 将生成 11-28-18.md。你在里面选择需要保留的句子后,AutoCut 将剪切出 11-28-18_cut.mp4,并生成 11-28-18_cut.md 来预览结果。

你可以使用任何的 Markdown 编辑器。例如我常用 VS Code 和 Typora。下图是通过 Typora 来对 11-28-18.md 编辑。

全部完成后在 autocut.md 里选择需要拼接的视频后,AutoCut 将输出 autocut_merged.mp4 和对应的字幕文件。

转录某个视频生成 .srt 和 .md 结果。

autocut -t 22-52-00.mp4
  1. 如果对转录质量不满意,可以使用更大的模型,例如autocut -t 22-52-00.mp4 –whisper-model large默认是 small。更好的模型是 medium 和 large,但推荐使用 GPU 获得更好的速度。也可以使用更快的 tiny 和 base,但转录质量会下降。

剪切某个视频

autocut -c 22-52-00.mp4 22-52-00.srt 22-52-00.md
  1. 默认视频比特率是 --bitrate 10m,你可以根据需要调大调小。
  2. 如果不习惯 Markdown 格式文件,你也可以直接在 srt 文件里删除不要的句子,在剪切时不传入 md 文件名即可。就是 autocut -c 22-52-00.mp4 22-52-00.srt
  3. 如果仅有 srt 文件,编辑不方便可以使用如下命令生成 md 文件,然后编辑 md 文件即可,但此时会完全对照 srt 生成,不会出现 no speech 等提示文本。autocut -m test.srt test.mp4 autocut -m test.mp4 test.srt # 支持视频和字幕乱序传入 autocut -m test.srt # 也可以只传入字幕文件

一些小提示

  1. 讲得流利的视频的转录质量会高一些,这因为是 Whisper 训练数据分布的缘故。对一个视频,你可以先粗选一下句子,然后在剪出来的视频上再剪一次。
  2. 最终视频生成的字幕通常还需要做一些小编辑。你可以直接编辑md文件(比srt文件更紧凑,且嵌入了视频)。然后使用 autocut -s 22-52-00.md 22-52-00.srt 来生成更新的字幕 22-52-00_edited.srt。注意这里会无视句子是不是被选中,而是全部转换成 srt
  3. 最终视频生成的字幕通常还需要做一些小编辑。但 srt 里面空行太多。你可以使用 autocut -s 22-52-00.srt 来生成一个紧凑些的版本 22-52-00_compact.srt 方便编辑(这个格式不合法,但编辑器,例如 VS Code,还是会进行语法高亮)。编辑完成后,autocut -s 22-52-00_compact.srt 转回正常格式。
  4. 用 Typora 和 VS Code 编辑 Markdown 都很方便。他们都有对应的快捷键 mark 一行或者多行。但 VS Code 视频预览似乎有点问题。
  5. 视频是通过 ffmpeg 导出。在 Apple M1 芯片上它用不了 GPU,导致导出速度不如专业视频软件。