英文语音识别模型:Parakeet TDT 0.6B V2

https://huggingface.co/nvidia/parakeet-tdt-1.1b

parakeet-tdt-1.1b 是一个自动语音识别 (ASR) 模型,可将语音转录为小写英文字母。该模型由 NVIDIA NeMo 和 Suno.ai 团队联合开发。它是 FastConformer [1] TDT [2](约 11 亿个参数)模型的 XXL 版本。

英伟达在发布了一款开源语音识别模型:Parakeet TDT 0.6B V2,其以 600M 参数登顶 Hugging Face Open ASR 榜单。

平均词错误率(WER)仅 6.05%,超越所有主流闭源模型。它能在 1 秒内转录 60 分钟高质量音频。

基于 FastConformer 架构和 TDT 解码器,仅用 600M 参数实现超低 WER 和极快推理速度。该模型基于 NVIDIA NeMo 和 Suno 团队收集和准备的 64K 小时英语语音进行训练。

该模型采用 FastConformer-TDT 架构

FastConformer 是对传统 Conformer 模型的优化版本,采用了 8 倍深度可分离卷积下采样(8x depthwise-separable convolutional downsampling),以提高计算效率。

TDT(Token-and-Duration Transducer) 是对传统 Transducer 的一种泛化方式,它将 “音素(token)”与“持续时间(duration)”的预测过程解耦。与传统 Transducer 在推理阶段产生大量空白(blank)输出不同,TDT 模型可以通过持续时间预测跳过大多数 blank(例如本模型 parakeet-tdt-1.1b 最多可跳过 4 帧),从而大幅提升推理速度。关于 TDT 的详细内容,请参见文章:Efficient Sequence Transduction by Jointly Predicting Tokens and Durations。

The training dataset consists of private subset with 40K hours of English speech plus 24K hours from the following public datasets:

  • Librispeech 960 hours of English speech
  • Fisher Corpus
  • Switchboard-1 Dataset
  • WSJ-0 and WSJ-1
  • National Speech Corpus (Part 1, Part 6)
  • VCTK
  • VoxPopuli (EN)
  • Europarl-ASR (EN)
  • Multilingual Librispeech (MLS EN) – 2,000 hour subset
  • Mozilla Common Voice (v7.0)
  • People’s Speech – 12,000 hour subset

自动语音识别(ASR)模型的性能通常通过词错误率(Word Error Rate, WER)来衡量。由于该数据集在多个领域上进行了训练,并且包含了更大规模的语料库,因此在通用音频转写任务中通常表现更好。

下表总结了本集合中各可用模型在使用Transducer 解码器下的性能表现。所有 ASR 模型的性能均以贪婪解码(greedy decoding)方式计算的 词错误率(WER%) 进行报告。

模型TokenizerVocabulary SizeAMIEarnings-22Giga SpeechLS test-cleanSPGI SpeechTEDLIUM-v3Vox PopuliCommon Voice
指标SentencePiece Unigram102415.9014.659.551.392.623.423.565.48

核心优势

  • • 极致转录效率:60 分钟音频仅需 1 秒内完成转录(A100 推理)
  • • OpenASR 榜首表现:超越 Whisper、Conformer、Wav2Vec 等主流闭源模型
  • • 极小参数量:仅 0.6B(轻量级,适合边缘设备)
  • • 高精度:平均 WER 6.05%(Hugging Face Open ASR 榜单),优于 Whisper-large-v3
  • • 高鲁棒性:多语速、多口音、多录音环境下表现稳定(英文)

应用场景推荐

  • • 实时会议转写
  • • 手机/设备端语音助手
  • • 视频字幕生成
  • • 大模型音频输入预处理器
  • • 教育/课程转录系统

技术构建说明

  • • 架构:TDT(Time-Depth Transformer),专注于时间维度建模
  • • 数据:英伟达自建 + 公共语音数据集大规模训练
  • • 推理引擎优化:支持 TensorRT / ONNX Runtime 等高性能部署方案

LLM分词器-SentencePiece/tiktoken/subword-nmt

SentencePiece 简介

https://github.com/google/sentencepiece

SentencePiece 是一种无监督的文本 tokenizer 和 detokenizer,主要用于基于神经网络的文本生成系统,其中,词汇量在神经网络模型训练之前就已经预先确定了。 SentencePiece 实现了subword单元(例如,字节对编码 (BPE))和 unigram 语言模型),并可以直接从原始句子训练字词模型(subword model)。 这使得我们可以制作一个不依赖于特定语言的预处理和后处理的纯粹的端到端系统。

SentencePiece 在大模型领域主要用于文本的 分词 和 编码

分词 是将文本分割成一个个独立的词语或符号。传统的中文分词方法,例如 BMM 分词、HMM 分词,都是基于规则的,需要人工制定分词规则。而 SentencePiece 则是基于 无监督学习 的,它可以自动学习文本的语义和结构,并根据学习结果进行分词。

编码 是将分词后的词语或符号转换为数字形式,以便计算机能够处理。SentencePiece 使用了一种称为 字节对编码 的方法,它可以将每个词语或符号编码成一个或多个字节。字节对编码的优点是能够有效地利用空间,并且可以将词语或符号之间的关系编码到编码中。

SentencePiece 在大模型领域具有以下优势:

  • 分词效果好,能够准确地识别词语和符号的边界。
  • 编码效率高,能够节省空间。
  • 能够将词语或符号之间的关系编码到编码中,有利于模型学习。

因此,SentencePiece 已经被广泛应用于各大模型,例如 Google 的 BERTGPT-3,以及阿里巴巴的 M6 等。

简单来说,SentencePiece 就是大模型领域的一个 分词和编码工具。它可以帮助大模型更好地理解和处理文本。

自监督训练原理

SentencePiece 的自监督训练模型原理是通过 无监督学习 的方式,学习文本的语义和结构,并根据学习结果进行分词和编码。

具体来说,SentencePiece 的训练过程可以分为以下几个步骤:

  1. 数据准备:首先需要准备一个文本语料库,语料库中的文本可以是任何类型,例如新闻文章、书籍、代码等。
  2. 模型训练:使用无监督学习算法训练 SentencePiece 模型,模型的输入是文本语料库,输出是分词后的文本。
  3. 模型评估:使用评估指标评估模型的性能,例如分词准确率、召回率等。

SentencePiece 使用的无监督学习算法是一种称为 Masked Language Modeling (MLM) 的算法。MLM 的基本思想是:将文本中的部分词语或符号进行遮蔽,然后让模型预测被遮蔽的词语或符号。通过这种方式,模型可以学习文本的语义和结构。

在 SentencePiece 中,MLM 的具体实现如下:

  1. 随机选择文本中的部分词语或符号进行遮蔽。
  2. 将被遮蔽的词语或符号替换为一个特殊符号,例如 [MASK]
  3. 将处理后的文本输入模型,让模型预测被遮蔽的词语或符号。

通过这种方式,模型可以学习到被遮蔽词语或符号与周围词语或符号之间的关系,从而提高分词和编码的准确性。

SentencePiece 的自监督训练模型具有以下优势:

  • 不需要人工制定分词规则,能够自动学习文本的语义和结构。
  • 分词效果好,能够准确地识别词语和符号的边界。
  • 编码效率高,能够节省空间。

SentencePiece 的自监督训练模型已经被广泛应用于各大模型,例如 Google 的 BERT、GPT-3,以及阿里巴巴的 M6 等。

SentencePiece中包含有四个部分:

  • Normalizer: 规一化操作,类似Unicode把字符转为统一格式。
  • Trainer: 从规一化后的语料中学习subword的切分模型。
  • Encoder: 对应预处理时的tokenization操作,把句子转为对应的subword或id。
  • Decoder: 对应后处理时的detokenization操作,把subword或id还原为原有句子

和 SentencePiece 类似的工具

  • Jieba:Jieba 是一个中文分词工具,它使用了一种称为 最大似然法 的方法进行分词。Jieba 的分词效果较好,并且速度较快。
  • Hmmseg:Hmmseg 是另一个中文分词工具,它使用了一种称为 隐马尔可夫模型 的方法进行分词。Hmmseg 的分词效果较好,并且可以支持多种语言。
  • Stanford CoreNLP:Stanford CoreNLP 是一个自然语言处理工具包,它包含了分词、词性标注、句法分析等功能。Stanford CoreNLP 的分词效果较好,并且可以支持多种语言。

使用建议:

  • 如果需要对中文文本进行分词,并且对分词效果要求较高,可以选择 SentencePiece、Jieba 或 Hmmseg。
  • 如果需要对多种语言文本进行分词,可以选择 Stanford CoreNLP。
  • 如果需要对文本进行分词和编码,并且对速度要求较高,可以选择 Jieba。
  • 如果需要对文本进行分词和编码,并且对分词效果要求较高,可以选择 SentencePiece 或 Hmmseg。

TiToken 简介

Tiktoken 的功能与 SentencePiece 类似,都是用于文本的 分词 和 编码

Tiktoken 是一个基于 BPE 算法的 快速分词器,它专门针对 GPT-4 和 ChatGPT 等大模型进行了优化。Tiktoken 的主要特点如下:

  • 速度快:Tiktoken 的分词速度比 SentencePiece 快很多,可以满足大模型训练和推理的需求。
  • 效果好:Tiktoken 的分词效果与 SentencePiece 相当,能够准确地识别词语和符号的边界。
  • 易用性:Tiktoken 提供了简单的 API 接口,方便使用。

Tiktoken 与 SentencePiece 的主要区别 如下:

  • 分词算法:Tiktoken 使用 BPE 算法进行分词,而 SentencePiece 使用的是无监督学习算法
  • 速度:Tiktoken 的分词速度比 SentencePiece 快很多。
  • 模型:Tiktoken 专门针对 GPT-4 和 ChatGPT 等大模型进行了优化,而 SentencePiece 则是通用的。

具体使用建议:

  • 如果需要对文本进行快速分词,并且对分词效果要求较高,可以选择 Tiktoken。
  • 如果需要对文本进行分词和编码,并且需要支持多种语言,可以选择 SentencePiece。
  • 如果需要对 GPT-4 或 ChatGPT 等大模型进行训练或推理,可以选择 Tiktoken。

LLM分词算法

分词算法有BPE(Byte Pair Encoding,BPE )、BBPE(Byte-level BPE)、WordPiece、ULM【Unigram Language Model】等。

Byte Pair Encoding (BPE)

BPE最早是一种数据压缩算法,由Sennrich等人于2015年引入到NLP领域并很快得到推广。该算法简单有效,因而目前它是最流行的方法。GPT-2和RoBERTa使用的Subword算法都是BPE。

BPE获得Subword的步骤如下:

  1. 准备足够大的训练语料,并确定期望的Subword词表大小;
  2. 将单词拆分为成最小单元。比如英文中26个字母加上各种符号,这些作为初始词表;
  3. 在语料上统计单词内相邻单元对的频数,选取频数最高的单元对合并成新的Subword单元;
  4. 重复第3步直到达到第1步设定的Subword词表大小或下一个最高频数为1.

Byte-level BPE

Unicode: Unicode 是一种字符集,旨在涵盖地球上几乎所有的书写系统和字符。它为每个字符分配了一个唯一的代码点(code point)用于标识字符。Unicode 不关注字符在计算机内部的具体表示方式,而只是提供了一种字符到代码点的映射。Unicode 的出现解决了字符集的碎片化问题,使得不同的语言和字符能够在一个共同的标准下共存。然而,Unicode 并没有规定如何在计算机内存中存储和传输这些字符。

UTF-8: UTF-8(Unicode Transformation Format-8)是一种变长的字符编码方案,它将 Unicode 中的代码点转换为字节序列。UTF-8 的一个重要特点是它是向后兼容 ASCII 的,这意味着标准的 ASCII 字符在 UTF-8 中使用相同的字节表示,从而确保现有的 ASCII 文本可以无缝地与 UTF-8 共存。在 UTF-8 编码中,字符的表示长度可以是1到4个字节,不同范围的 Unicode 代码点使用不同长度的字节序列表示,这样可以高效地表示整个 Unicode 字符集。UTF-8 的编码规则是:

  • 单字节字符(ASCII 范围内的字符)使用一个字节表示,保持与 ASCII 编码的兼容性。
  • 带有更高代码点的字符使用多个字节表示。UTF-8 使用特定的字节序列来指示一个字符所需的字节数,以及字符的实际数据。

例如,英文字母 “A” 的 Unicode 代码点是U+0041,在 UTF-8 中表示为 0x41(与 ASCII 编码相同);而中文汉字 “你” 的 Unicode 代码点是U+4F60,在 UTF-8 中表示为0xE4 0xBD 0xA0三个字节的序列。

所以简单的来说:

  • Unicode 是字符集,为每个字符分配唯一的代码点。
  • UTF-8 是一种基于 Unicode 的字符编码方式,用于在计算机中存储和传输字符。

Byte(字节):计算机存储和数据处理时,字节是最小的单位。一个字节包含8个(Bit)二进制位,每个位可以是0或1,每位的不同排列和组合可以表示不同的数据,所以一个字节能表示的范围是256个。

BBPE核心思想将BPE的从字符级别扩展到子节(Byte)级别。BPE的一个问题是如果遇到了unicode编码,基本字符集可能会很大。BBPE就是以一个字节一种“字符”,不管实际字符集用了几个字节来表示一个字符。这样的话,基础字符集的大小就锁定在了256(2^8)。采用BBPE的好处是可以跨语言共用词表,显著压缩词表的大小。而坏处就是,对于类似中文这样的语言,一段文字的序列长度会显著增长。因此,BBPE based模型可能比BPE based模型表现的更好。然而,BBPE sequence比起BPE来说略长,这也导致了更长的训练/推理时间。BBPE其实与BPE在实现上并无大的不同,只不过基础词表使用256的字节集

Byte-level BPE(BBPE)和Byte-Pair Encoding (BPE)区别就是BPE是最小词汇是字符级别,而BBPE是字节级别的,通过UTF-8的编码方式这一个字节的256的范围理论上可以表示这个世界上的所有字符。

所以实现的步骤和BPE就是实现的粒度不一样,其他的都是一样的。

  1. 初始词表:构建初始词表,包含一个字节的所有表示(256)
  2. 构建频率统计:统计所有子词单元对(两个连续的子词)在文本中的出现频率。
  3. 合并频率最高的子词对:选择出现频率最高的子词对,将它们合并成一个新的子词单元,并更新词汇表。
  4. 重复合并步骤:不断重复步骤 2 和步骤 3,直到达到预定的词汇表大小、合并次数,或者直到不再有有意义的合并(即,进一步合并不会显著提高词汇表的效益)。
  5. 分词:使用最终得到的词汇表对文本进行分词。

大模型中,以Byte-level BPE(BBPE)这种方式进行分词是不会出现OOV

WordPiece

WordPiece算法与 BPE(Byte-Pair Encoding)都是子词分词算法,但它们在合并策略上存在关键区别。WordPiece的主要目标是通过最大化训练数据的似然(likelihood),即在每次迭代中,选择能最大化训练数据似然增益的子词对(subword pair)进行合并。

Google的Bert模型在分词的时候使用的是WordPiece算法。与BPE算法类似,WordPiece算法也是每次从词表中选出两个子词合并成新的子词。与BPE的最大区别在于,如何选择两个子词进行合并:BPE选择频数最高的相邻子词合并,而WordPiece选择能够提升语言模型概率最大的相邻子词加入词表。

看到这里,你可能不清楚WordPiece是如何选取子词的。这里,通过形式化方法,能够清楚地理解WordPiece在合并这一步是如何作出选择的。假设句子S=(t1,t2,…,tn)由n个子词组成,ti表示子词,且假设各个子词之间是独立存在的,则句子S的语言模型似然值等价于所有子词概率的乘积:

假设把相邻位置的x和y两个子词进行合并,合并后产生的子词记为z,此时句子S似然值的变化可表示为:

从上面的公式,很容易发现,似然值的变化就是两个子词之间的互信息。简而言之,WordPiece每次选择合并的两个子词,他们具有最大的互信息值,也就是两子词在语言模型上具有较强的关联性,它们经常在语料中以相邻方式同时出现。

算法流程如下:

  1. 准备足够大的训练语料
  2. 确定期望的subword词表大小
  3. 将单词拆分成字符序列
  4. 基于第3步数据训练语言模型
  5. 从所有可能的subword单元中选择加入语言模型后能最大程度地增加训练数据概率的单元作为新的单元
  6. 重复第5步直到达到第2步设定的subword词表大小或概率增量低于某一阈值

Unigram Language Model (ULM)

与WordPiece一样,Unigram Language Model(ULM)同样使用语言模型来挑选子词。不同之处在于,BPE和WordPiece算法的词表大小都是从小到大变化,属于增量法。Unigram Language Model则是减量法,即先初始化一个大词表,根据评估准则不断丢弃词表,直到满足限定条件。ULM算法考虑了句子的不同分词可能,因而能够输出带概率的多个子词分段。

我们接下来看看ULM是如何操作的。

对于句子S,x→=(x1,x2,…,xm)为句子的一个分词结果,由m个子词组成。所以,当前分词下句子S的似然值可以表示为:

对于句子S,挑选似然值最大的作为分词结果,则可以表示为

这里U(x)包含了句子的所有分词结果。在实际应用中,词表大小有上万个,直接罗列所有可能的分词组合不具有操作性。针对这个问题,可通过维特比算法得到x∗来解决。

那怎么求解每个子词的概率P(xi)呢?ULM通过EM算法来估计。假设当前词表V, 则M步最大化的对象是如下似然函数:

其中,|D|是语料库中语料数量。上述公式的一个直观理解是,将语料库中所有句子的所有分词组合形成的概率相加。

但是,初始时,词表V并不存在。因而,ULM算法采用不断迭代的方法来构造词表以及求解分词概率:

  1. 初始时,建立一个足够大的词表。一般,可用语料中的所有字符加上常见的子字符串初始化词表,也可以通过BPE算法初始化。
  2. 针对当前词表,用EM算法求解每个子词在语料上的概率。
  3. 对于每个子词,计算当该子词被从词表中移除时,总的loss降低了多少,记为该子词的loss。
  4. 将子词按照loss大小进行排序,丢弃一定比例loss最小的子词(比如20%),保留下来的子词生成新的词表。这里需要注意的是,单字符不能被丢弃,这是为了避免OOV情况。
  5. 重复步骤2到4,直到词表大小减少到设定范围。

可以看出,ULM会保留那些以较高频率出现在很多句子的分词结果中的子词,因为这些子词如果被丢弃,其损失会很大。

算法

  1. 准备足够大的训练语料
  2. 确定期望的subword词表大小
  3. 给定词序列优化下一个词出现的概率
  4. 计算每个subword的损失
  5. 基于损失对subword排序并保留前X%。为了避免OOV,建议保留字符级的单元
  6. 重复第3至第5步直到达到第2步设定的subword词表大小或第5步的结果不再变化

BPE分词算法-原理和代码实现

三种主流的Subword算法,它们分别是:Byte Pair Encoding (BPE)、WordPiece和Unigram Language Model。

执行分词的算法模型称为分词器(Tokenizer),划分好的一个个词称为Token(中文叫词元,为啥不直接叫Word?接着往后看),这个过程称为Tokenization

我们将一个个的token(可以理解为小片段)表示向量,我们分词的目的就是尽可能的让这些向量蕴含更多有用的信息,然后把这些向量输入到算法模型中。

由于一篇文本的词往往太多了,为了方便算法模型训练,我们会选取出频率(也可能是其它的权重)最高的若干个词组成一个词表(Vocabulary)

‼️古典分词方法的缺点

一个句子,使用不同的规则,将有许多种不同的分词结果。古典分词方法的缺点非常明显:

  • 对于未在词表中出现的词(Out Of Vocabulary, OOV),模型将无法处理(未知符号标记为 [UNK])。
  • 词表中的低频词/稀疏词在模型训无法得到训练(因为词表大小有限,太大的话会影响效率)。
  • ⭐️很多语言难以用空格进行分词,例如英语单词的多形态,”look”衍生出的”looks”, “looking”, “looked”,其实都是一个意思,但是在词表中却被当作不同的词处理,模型也无法通过old, older, oldest之间的关系学到smart, smarter, smartest之间的关系。这一方面增加了训练冗余,另一方面也造成了大词汇量问题。

Character embedding,是一种更为极端的分词方法,直接把一个词分成一个一个的字母和特殊符号。虽然能解决OOV问题,也避免了大词汇量问题,但缺点也太明显了,粒度太细,训练花费的成本太高,但这种思想或许我们后面会用到。

BERT算法的横空出世,NLP中的很多领域都被颠覆性的改变了,BERT也称为了一个非常主流的NLP算法。由于BERT的特性,要求分词方法也必须作出改变。这就对应提出了Subword算法(或成为WordPiece),该算法已经成为一种标配。

基于子词的分词方法(Subword Tokenization)

可见不论是传统分词算法的局限性,还是BERT的横空出世,都要求我们提出新的分词算法,下面就轮到本文的主角登场:基于子词的分词方法(Subword Tokenization),简称为Subword算法,意思就是把一个词切成更小的一块一块的子词。如果我们能使用将一个token分成多个subtokens,上面的问题就能很好的解决

这种方法的目的是通过一个有限的词表来解决所有单词的分词问题,同时尽可能将结果中token的数目降到最低。例如,可以用更小的词片段来组成更大的词,例如:

unfortunately” = “un” + “for” + “tun” + “ate” + “ly”。

可以看到,有点类似英语中的词根词缀拼词法,其中的这些小片段又可以用来构造其他词。可见这样做,既可以降低词表的大小同时对相近词也能更好地处理

Subword与传统分词方法的比较

  • 传统词表示方法无法很好的处理未知或罕见的词汇(OOV问题)。
  • 传统词tokenization方法不利于模型学习词缀之间的关系,例如模型学到的“old”, “older”, and “oldest”之间的关系无法泛化到“smart”, “smarter”, and “smartest”。
  • Character embedding作为OOV的解决方法粒度太细。
  • Subword粒度在词与字符之间,能够较好的平衡OOV问题。

目前有三种主流的Subword算法,它们分别是:Byte Pair Encoding (BPE)、WordPiece和Unigram Language Model。

字节对编码(BPE, Byte Pair Encoding)

字节对编码(BPE, Byte Pair Encoder),又称digram coding双字母组合编码,是一种数据压缩算法,用来在固定大小的词表中实现可变⻓度的子词。该算法简单有效,因而目前它是最流行的方法。

BPE首先将词分成单个字符,然后依次用另一个字符替换频率最高一对字符,直到循环次数结束。

接下来详细介绍BPE在分词中的算法过程:

算法过程

  1. 准备语料库,确定期望的subword词表大小等参数
  2. 通常在每个单词末尾添加后缀</w>,统计每个单词出现的频率,例如,low的频率为5,那么我们将其改写为"l o w </ w>”:5 注:停止符</w>的意义在于标明subword是词后缀。举例来说:st不加</w>可以出现在词首,如st ar;加了</w>表明该子词位于词尾,如we st</w>,二者意义截然不同
  3. 将语料库中所有单词拆分为单个字符,用所有单个字符建立最初的词典,并统计每个字符的频率,本阶段的subword的粒度是字符
  4. 挑出频次最高的符号对,比如说 th 组成的 th,将新字符加入词表,然后将语料中所有该字符对融合(merge),即所有 th 都变为 th。 注:新字符依然可以参与后续的merge,有点类似哈夫曼树,BPE实际上就是一种贪心算法
  5. 重复遍历 2和 3 操作,直到词表中单词数达到设定量下一个最高频数为1,如果已经打到设定量,其余的词汇直接丢弃

注:看似我们要维护两张表,一个词表,一个字符表,实际上只有一张,词表只是为了我们方便理解。</w> 是为了明确 subword 是否是词尾,它在训练、merge 过程中和普通字符一样对待,在最终输出时作为重建原词的标记使用。

我们举一个完整的例子,来直观地看一下这个过程:

1、获取语料库,这样一段话为例:FloydHub is the fastest way to build, train and deploy deep learning models. Build deep learning models in the cloud. Train deep learning models.

2、拆分,加后缀,统计词频:

3、建立词表,统计字符频率(顺便排个序):

4、以第一次迭代为例,将字符频率最高的de替换为de,后面依次迭代:

5、更新词表 继续迭代直到达到预设的subwords词表大小或下一个最高频的字节对出现频率为1。

如果将词表大小设置为10,最终的结果为:

d e
r n
rn i
rni n
rnin g</w>
o de
ode l
m odel
l o
l e

这样我们就得到了更加合适的词表,这个词表可能会出现一些不是单词的组合,但是其本身有意义的一种形式

BPE的优点

上面例子中的语料库很小,知识为了方便我们理解BPE的过程,但实际中语料库往往非常非常大,无法给每个词(token)都放在词表中。BPE的优点就在于,可以很有效地平衡词典大小和编码步骤数(将语料编码所需要的token数量)。

随着合并的次数增加,词表大小通常先增加后减小。迭代次数太小,大部分还是字母,没什么意义;迭代次数多,又重新变回了原来那几个词。所以词表大小要取一个中间值。

BPE的缺点

  • 对于同一个句子, 例如Hello world,如图所示,可能会有不同的Subword序列。不同的Subword序列会产生完全不同的id序列表示,这种歧义可能在解码阶段无法解决。在翻译任务中,不同的id序列可能翻译出不同的句子,这显然是错误的。
  • 在训练任务中,如果能对不同的Subword进行训练的话,将增加模型的健壮性,能够容忍更多的噪声,而BPE的贪心算法无法对随机分布进行学习。

个人理解:我感觉缺点直接可以忽略

BPE的适用范围

BPE一般适用在欧美语言拉丁语系中,因为欧美语言大多是字符形式,涉及前缀、后缀的单词比较多。而中文的汉字一般不用BPE进行编码,因为中文是字无法进行拆分。对中文的处理通常只有分词和分字两种。理论上分词效果更好,更好的区别语义。分字效率高、简洁,因为常用的字不过3000字,词表更加简短。

BPE的实现

实现代码如下:

import re, collections

def get_vocab(filename):
    vocab = collections.defaultdict(int)
    with open(filename, 'r', encoding='utf-8') as fhand:
        for line in fhand:
            words = line.strip().split()
            for word in words:
                vocab[' '.join(list(word)) + ' </w>'] += 1
    return vocab

def get_stats(vocab):
    pairs = collections.defaultdict(int)
    for word, freq in vocab.items():
        symbols = word.split()
        for i in range(len(symbols)-1):
            pairs[symbols[i],symbols[i+1]] += freq
    return pairs

def merge_vocab(pair, v_in):
    v_out = {}
    bigram = re.escape(' '.join(pair))
    p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
    for word in v_in:
        w_out = p.sub(''.join(pair), word)
        v_out[w_out] = v_in[word]
    return v_out

def get_tokens(vocab):
    tokens = collections.defaultdict(int)
    for word, freq in vocab.items():
        word_tokens = word.split()
        for token in word_tokens:
            tokens[token] += freq
    return tokens

跑一个例子试一下,这里已经对原句子进行了预处理:

vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
print('==========')
print('Tokens Before BPE')
tokens = get_tokens(vocab)
print('Tokens: {}'.format(tokens))
print('Number of tokens: {}'.format(len(tokens)))
print('==========')

num_merges = 5
for i in range(num_merges):
    pairs = get_stats(vocab)
    if not pairs:
        break
    best = max(pairs, key=pairs.get)
    vocab = merge_vocab(best, vocab)
    print('Iter: {}'.format(i))
    print('Best pair: {}'.format(best))
    tokens = get_tokens(vocab)
    print('Tokens: {}'.format(tokens))
    print('Number of tokens: {}'.format(len(token

结果:

==========
Tokens Before BPE
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 17, 'r': 2, 'n': 6, 's': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 0
Best pair: ('e', 's')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'es': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 1
Best pair: ('es', 't')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'est': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 2
Best pair: ('est', '</w>')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 3
Best pair: ('l', 'o')
Tokens: defaultdict(<class 'int'>, {'lo': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========
Iter: 4
Best pair: ('lo', 'w')
Tokens: defaultdict(<class 'int'>, {'low': 7, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'w': 9, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========

编码与解码

上面的过程称为编码。解码过程比较简单,如果相邻子词间没有中止符,则将两子词直接拼接,否则两子词之间添加分隔符。 如果仍然有子字符串没被替换但所有token都已迭代完毕,则将剩余的子词替换为特殊token,如<unk>。例如:

# 编码序列
["the</w>", "high", "est</w>", "moun", "tain</w>"]

# 解码序列
"the</w> highest</w> mountain</w>"

如何调包使用BPE

BPE 可以直接用最经典的 subword-nmt 包,不需要自己实现

Nexa AI OmniAudio-2.6B:全球最快的边缘部署音频语言模型

OmniAudio 是全球最快、最高效的音频语言模型——OmniAudio – 2.6B 是一款高性能的多模态音频语言模型,参数量为 2.6B,能够高效处理文本和音频输入。它将 Gemma – 2 – 2B、WhisperTurbo 以及定制的 Projector 模块集成到一个统一框架中,突破了传统模型串联 ASR(自动语音识别)和 LLM(大语言模型)的架构限制,实现了更低延迟、更高效能的音频 – 文本一体化处理。这种一体化的设计使得音频信息能够直接在模型内部进行处理和转换,避免了传统架构中多次数据传输和处理带来的延迟和资源浪费。

huggingface : https://huggingface.co/NexaAIDev/OmniAudio-2.6B

二、技术原理

1、模型架构

Gemma – 2 – 2B:作为负责文本处理的基础语言模型,它拥有强大的语言理解和生成能力。其内部的神经网络结构经过精心设计和训练,能够对音频文本转换后的文本进行深入分析和理解。例如,在处理复杂的语义关系时,Gemma – 2 – 2B 可以准确地识别出词汇之间的逻辑联系,从而为后续的语言生成提供准确的基础。

  • WhisperTurbo是优化后的音频编码器,能够生成高质量的音频嵌入。它通过对音频信号进行特征提取和编码,将音频信息转化为模型可处理的形式。WhisperTurbo 在处理音频信号时,能够捕捉到音频中的细微特征,如语音的语调、语速变化等,这些特征对于准确理解音频内容至关重要。
  • 定制Projector模块:将 Whisper 的音频 token 转化为与 Gemma 文本嵌入对齐的序列,确保音频 – 文本模态的高效融合。它通过一种特殊的映射机制,使得音频和文本在向量空间中能够准确对应,同时保持语言模型的原始性能。这种对齐方式使得模型在处理音频输入时,能够像处理文本输入一样高效地进行语言理解和生成。

2、训练方法

  • 预训练阶段:基于 MLSEnglish10K 转录数据集进行基础的音频 – 文本对齐能力训练。为了支持多任务应用,数据集中引入了特殊的 <|transcribe|>token,用以区分语音转文本和内容补全任务,确保模型在不同场景下性能的一致性。在预训练过程中,模型通过大量的音频 – 文本对数据学习,逐渐掌握音频和文本之间的对应关系,形成初步的音频处理和语言理解能力。
  • 监督微调阶段(SFT):使用合成数据集进行指令调优。数据集同样以 MLSEnglish10K 为基础,结合专有模型对上下文进行扩展,生成丰富的 “音频 – 文本” 对。通过这种方式,模型具备了更强的音频输入语义理解和会话生成能力。例如,在处理特定领域的音频数据时,模型能够根据微调数据中的领域知识,准确理解音频中的专业术语和特定表达方式。
  • 直接偏好优化(DPO):利用 GPT – 4O API 对模型初始输出进行评估,标注不正确的输出为 “拒绝”(rejected),并生成替代答案作为 “偏好”(preferred)参考。为了保持 Gemma – 2 的文本处理性能,额外增加了偏好训练步骤,使用 Gemma – 2 的原始文本作为 “标准” 训练模型,在处理音频输入时匹配其高水平表现。通过 DPO,模型能够不断优化自己的输出,使其更加符合人类的语言习惯和实际需求。

三、功能特点

1、处理速度快

在 2024 Mac Mini M4 Pro 上,使用 Nexa SDK 并采用 FP16 GGUF 格式时,模型可实现每秒 35.23 个令牌的处理速度,而在 Q4_K_M GGUF 格式下,可处理每秒 66 个令牌。相比之下,Qwen2 – Audio – 7B 在相似硬件上只能处理每秒 6.38 个令牌,展示出显著的速度优势,能够满足实时音频处理的需求。例如,在实时语音翻译场景中,快速的处理速度可以确保翻译结果几乎与语音同步输出,大大提高了沟通效率。

2、资源效率高

模型的紧凑设计有效减少了对云资源的依赖,使其成为功率和带宽受限的可穿戴设备、汽车系统及物联网设备的理想选择,降低了设备的运行成本和对网络的依赖。在一些网络信号不稳定的偏远地区,或者在电池续航有限的可穿戴设备上,OmniAudio – 2.6B 能够凭借其低资源消耗的特点,稳定地运行并提供准确的音频处理服务。

3、高准确性和灵活性

尽管 OmniAudio – 2.6B 专注于速度和效率,但其在准确性方面也表现不俗,适用于转录、翻译、摘要等多种任务。无论是实时语音处理还是复杂的语言任务,OmniAudio – 2.6B 都能够提供精准的结果。例如,在处理学术讲座的音频转录时,模型能够准确识别专业术语和复杂的句子结构,生成高质量的文字转录稿。

四、应用场景

1、智能家居

可以集成到智能家居设备中,如智能音箱、智能家电等,实现语音控制和交互。用户可以通过语音指令控制家电的开关、调节温度、查询信息等,提供更加便捷的智能家居体验。例如,用户只需说出 “打开客厅的灯”,智能音箱中的 OmniAudio – 2.6B 模型就能准确识别指令并控制灯光设备,让家居生活更加智能和便捷。

2、车载系统

在汽车中,OmniAudio – 2.6B 可以用于语音导航、语音娱乐系统、车辆状态查询等功能。驾驶员可以通过语音与车辆进行交互,提高驾驶安全性和便利性。比如,驾驶员在行驶过程中无需手动操作,只需说出 “导航到最近的加油站”,车载系统就能快速响应并规划路线,避免了分心驾驶带来的安全隐患。

3、远程医疗

在远程医疗领域,该模型可以用于实时转录医生与患者的对话、翻译医疗文件和语音指令等,提高医疗服务的效率和质量,方便医患之间的沟通。例如,在跨国远程会诊中,OmniAudio – 2.6B 可以实时翻译不同语言的对话,让医生和患者能够无障碍交流,确保诊断和治疗的准确性。

4、可穿戴设备

如智能手表、智能耳机等可穿戴设备可以利用 OmniAudio – 2.6B 实现语音助手功能,用户可以通过语音查询天气、设置提醒、发送短信等,为用户提供更加便捷的操作方式。比如,用户在运动时双手不方便操作,只需对着智能手表说出 “设置明天早上 7 点的闹钟”,手表就能快速完成设置,提升了用户体验。